


 
1.  Introduction to Group Theory 

Binary Operations
Like abstract multiplication
Definition

Let A be a set. A binary operation * on A is a function

*: AxA ->Ai(a ,b) a * bt A

We do not write * (a,
b)

Notation :

1) N : Natural Numbers

2)2 : Integers
3) Q : Rational numbers

, Q = [p/9, P,9 , 9703
4) RR : Real Numbers

5) I : Complex Numbers

Examples : Example of binary operations
1) + is a binary operation on 1 ,

D
,
N

, 2), Q

2) - is a binary operation on I, Q ,
1

,
K

,
not N

3) 1 : (a
,
b) alb on Q*, 1**, *

where S*=S1504

4) + on Mn(IR) (nxn matrices on IR)
5) X on Mn(IR)

Remarks :

i) a* beA is expressed by saying * is closed or A is "closed" under

Notice : '-'is closed on I but not in IN as

1 - 2 = -1-N
EIN EIN



ii) Order matters
,
in general , a* b + b* a

Example in 2 ,
1-2 + 2-1

iii) The fact that * is a function with domain A means

↓ (a , b) + AXA
,

a * b is defined

A +A = S(a , b) ; a
, b =A)

eg : / on R where (a , b) + alb is not a binary operation as

alo not defined

iv) The fact that * is a function with AxA means for any (a , b) = AXA ,
ab

is uniquely defined

Warning : Not always clear * is well defined

Example : * on Q given by

↑*(b) + (d)

* is not a binary operation as it is not well defined.

=
But
+=
= * 5= =

and not well defined

Definition

A binary operation * is commutative it

* a
, bEA ,

a*b = ba

Examples
1) + on & is commutative as atb = b+ a Va

, be 2

2) -

on I is not commutative as 1-2-2-1



Notation:

common symbols for binary operations are

1) a . b particularly for commutative operations

2)a ob (composition of functions)

3)a + b

4) Nothing ; ab called juxtaposition

Cayley Tables
* on a finite set G

* ............. Note

:

g g* 9 g * h
* is

commutative
:

h n# 9 hah table is symmetric around leading diagonal

Example : x On 50
, 1-13 is commutative , has table

X O - I I

00 0 O

8-101 - I

10 - 1 I

But * on 50
,

1
,
-19 with table

*0 - I

O 0 I - I

8:



Groups

Definition 1 . 5 Group

A group (G, * ) is a set G together with binary operation * such that

(a) Associativity
Va

,
b , CEG,

a * (b* c) = (a+b) * C

(b) Existence of identity
EeeG such that for all acG

exa = a = a * C

(c) Inverse

VaEG
,
I bEG such that

a * b = e = ba

Remark :

i) (a) is called associative property
ii) we often drop'*

'

when it is clear saying 'G' rather than (G,*) and

writing ab for a*b

iii) being closed is built into definition of binary operation

Definition Order

Let G be a group.

Order of a group is the cardinality of the set G
G = order

A group is finite/infinite #X order is finite/infinite



Lemma Uniqueness of identity and inverse

Let G be a group. Then

i) The elemente such that

exa = a = a* VatG
is unique

ii) given a ,
the element b such that

a* b = e = ba

is unique

Proof :

i) Suppose e , fEG and for all acG

(1) exa = a = a*e and +xa = a = a xf(z)

Then
(1) exf = f and ext = e(2)

= e = f

ii) Let acG and suppose b
, CEG with

b * a = e = a* b and c* a = e = a* C

Then

b = bxe = b * (a*c) = (b (a) + ) = ex) =

Cassociativity #

We say e is the identity of G, we can also write &G ,
1

, 7G

b is the inverse of a and write b = at

We emphasize a is the unique element ofG such that

a*a = e = a*a



Lemma

Let G be a group. Then Va ,
b

,CEG ,

1) (a - ) = a

2) (ab) = bat

3) ab = ac => b = c left cancellation

4) ba = ca = b = c right cancellation

Proof :

1) Follows from the fact that

a+ka = e = a *a

and uniqueness of inverse

2) We have

(b 'a
-1)(ab) = b (a (a)b

= beb = b b

= e

- I(ab)(ba 1) = a(bb))a = aea

= aa = e

=> (ab)" = bat by uniqueness of inverses

3)ab = ac => a(ab) = a(ac)

=> (aa)b = (a a)c associativity
=> eb = ec inverse

=> b = c identity
4) ba= ca => (ba)a = (a)at

=> be = ce associativity
=> be = ce inverse

=> b = 2 identity #



(3) and (4) called left and right cancellation laws

corollary
Let G be a group. Then Va

, ..., an EG

(a, . .
. . an)" = an .... a

Proof Previous Lemma and induction

For n = 2,

(a
,
a2)" = a a

by previous lemma

Inductive hypothesis : Assume true for n= K

(a, ..... ak)" = a ..... a,

Inductive step : If property true for n = 1 => true for n = k+

(a, ... .

apa+1) = (a ,
.... a ,)akx ) associative

= a (a ,
.... a

,)"base case

= ak+ a .... a inductive hypothesis
*

Corollary Latin Square Property
LetG be a group of finite order

Then every element of G occurs exactlya in every row and in every column
of the table of G

Proof : Consider row Ra labelled by ac G

C Y
ee Y

:
Ra- ........

ay



Let geGageG closure

C alg
ee a lg alag) = (aa) g = eg =

g
:

Ra - a ........ alag)

so that g occurs in Now Ra and column of atg
Ifg also occurs in column labelled by h

,
then

C

ee age h:
aa ................ --

9 g

g = alag) = ah so by cancellation
, ag = h

so goccurs exactly once in Ra.
.

Similar for columns
#

Example.

& A b C

e e A b L is the partial table of a group then we

can complete it uniquely
a d e b

b b) e A

↳ Latin square property

ccb a E

In any group with identity +,

f + =f

=> identity must be in leading diagonal

Definition

A group (G,*) is commutative or abelian

a* b = b*Va , bcG



Notation:

· For X14
,
X

*
= x 150]

· Q = 59Q19303

· Rt = EVER : >03

Notation : If (G , +) is a group,
we write

· 0 for identity
-- a for inverse of a

On occasion
, for clarity ,

we write

·

eq for identity
· Of for order of group G under 't

Examples of Groups

Examples :

1) (l*, x) ,
(* *,x)

,
(Qt, x) ,

(IRt
,

X)
,
(

,
x) are all commutative infinite groups

2) (2
,
*) not a group ,

no inverses except 1
,
-1 = 2)

*

3) T= 51 , - 13
,
(T

,
X) is a commutative group

!
- 1 - 11

order(T) = 2

4) (2
,
+ )

,
(Q

,
+)

,
(1

,
+)

,
(k ,

+ ) are all infinite abelian groups

identity : O

inverse of a : - a

Convention :

· Qt, IRt, Q*, R*,
*

- always groups under x

· 2
, Q ,

IR
, C-always groups under +



General Linear Group

Definition General Linear Group

Let GL(n , IR) = [A[Mn(IR) : detAFO?

Proposition
(GL(n , 1R)

,
X) is a group : general linear group of size n over IR

Proof :

Let A
, BEGLIn , 1) . Then

det (A B) = detAdetB #O as detAtO
,
detBFO closure

Y
multiplicative property of determinant

GL(n , IR)

Mn(IR)
AXB-AB

det + 0
so ABEGL(n , IR) => X is a binary operation

O

· Matrix multiplication is associative

· det In = 1 + 0 = InEGL(n , IR) and

InA = A = AIn VAEGLIn . IR)

Cidentity)
· VAEGL(n,I)

,
detA = 1 + 0 = AEGL(niIR) and

det A

AA"= In = AA and AEGL(n , IR)

so A is the inverse of A in GL(n , IR)

So GL(n , IR) is a group #

Note GL(n , IR) is not commutative

The same holds for CGL(n , F) ,
x) is a group where If is a field

A ,Bl = BY At

similarly for any field f , we denote the set of nxn matrices over IF by Mn(IF)
Put GL(n , IF) = &AEMn(17) : det A + 03

(GL(n, IF)
,
x) is a group with identity In and inverse of A being the same

as matrix inverse

(GL(n , IF) is a general linear group



corollary
As GL(n , IR) is a group ,

inverse of a matrix is unique
Also if ABEGL(n , IR),

(A ,BT = BY AT

similarly for any field f , we denote the set of nxn matrices over IF by Mn(IF)
Put GL(n , IF) = &AEMn(17) : det A + 03

(GL(n, IF)
,
x) is a group with identity In and inverse of A being the same

as matrix inverse

(GL(n , IF) is a general linear group

Klein-4 group
Lemma Klein-4 group

Let K = de
, a

,
b

,
c and let '' be given by

· eab(

Then (K,. ) is a group and is called

each e Klein-4 group

Proof : Checking associativity
consider expressions (xy)z = x(yz) .

We need to show that for any values of , y ,
z

from K
, we have

(x(y)z = x(yz)
1) If atleast one of s

, y ,
z is e

,
result is true

2) If sy ,
zeda , b

,
ch and are distinct , then (xy) z = zz = e and xclyz) = xx = e

3) If s
, y ,
zeda , b

, ch and e =

y
z

, then (xylz = ez = z

x(yz) = xt = z where + = yz + x

4) If sy ,
zeda ,

b
,
ch and x =

y
= z

, then (xylz = ez = z and xlyzl = xe = x = z

The other cases follow similarly using commutativity #



Definition Self inverse

# x = x for SEG , then a is self inverse

Note : e' =e as ee = e => e always self inverse

In K
, every element is self inverse

,
K is commutative

The groups (In ,
#) and (2p*, Q) , p prime

Congruence of Integers
This is a relation I

Definition Congruence modulo n

Let neI and define relation " such that

a = b(modn)> a - b = kn for some KEZ

The following are equivalent
1) a = b(modn)

2) n)(a - b)

3)a = b + kn

4) a andb leave the same remainder when divided by n

5) a mod n = b mod n

Theorem

For any neI ,
we have Elmodn) congruence modulon is an equivalence

tion Zrela on &

Proof :

Reflexivity : Vac
,

a -a = 0 and no n a-a

=> a = a(modn)

symmetry : for any a
,
be

,
a= b(modn) => a - b = kn

=> b - a = ( k)n

=> b = a(mod n)



Transitivity : for any a
,

b
, c EZ

a = b(modn) and b = c(modn) => a-b = kn and b-c = In for some K
,
le2

=> a-c = (k+1)n

=> a = c(modn)
#

For at l
,

we write

[a] = Ext]) /x = a(modn) ]

i

. e. equivalence class of A

By the division algorithm , for any neI ,
b

, acI ,

b = kn + a
,
0xaan

Therefore there are n-distinct equivalence classes

[0]
,
[l]

,

. . . .

,
In -1]

Theorem

IfIn is an equivalence relation on set A , then Va ,
be A

and [a] = [b]

Proof :

() : Suppose arb and se[a]

xc[a] = sna and and

=> sub Transitivity
=> xe[b]

=> [a] = [b]

Similarly [b] =[a]. Therefore by mutual containment

[a] = [b]

(E) :

Suppose [a] = [b)
symmetry transitivity

se[a] and sce[b] = sa and sub => awx and scrb => and &



Theorem

IfIn is an equivalence relation on set A , then

I = S[a] : acA3 partitions A

Proof :

Since In is an equivalence relation ; it is reflexive

So VaeA
,
and ae[a]

,
hence [a] + &

Take any scels]
(since ~ reflexive) so so belongs to atleast one equivalence class

suppose xe[a] and xc[b] ([a]n[b] + 9) = cna and sub

=> and and smb

=> and

=> [a] = [b]

Therefore a belongs to a unique equivalence class since if [a] and [b] are distinct

eqnivalence classes ,

[a] + [b] = [a] n[b] +

=> mutually disjoint
Further [a] - A for any acA

=> Ula] < A & => Uta] = A

By reflexivity , if at A
, then actal ** atA

(ana) *

Definition Integers modulo n

set In is integers modulo n defined by
2n = [t0]

,
[1]

,

. .

., In-1]3

By the above theorem, In partition I

2 = [0]u [1] . . . . v In - 1]



Operations on In

Define operations & and ① as follows

· 0 : [a] @[b] = [a + b]
a ,
be]

Q : [a]@[b] = [axb]

Lemma

⑦ is a well defined associative
,
commutative binary operation on 2n

[O] is the identity forI

Proof showing & is well defined

We want to show that [a] @ [b] is uniquely valued.

Suppose [a] = [al) and [b] = [b')

=> a = almodn) and b = b'(modn)

= n)(a-al) and n(b - b)

=> n(((a - al) + (b -b) (distributivity
=> n)(a+ b) - (a)+ b)) = a+ b = al + b (modn)

=> [a + b] = [a + b']

=> ([a][b])= [al] # [b]

showing ① is associative : [a]
,
[b]

,
[c]e In

([a]@[b])e[c] = [a+b]e[]

= [(a+ b) +c]

= [a + (b+c)]

= [a][b+c]

= [a]@([b] t [c])

showing ① is commutative : [a] , [b]c In,

[a][b] = [a+ b) = [b +a) = [b] #[a]

Showing [O) is the identity : V[a] In
,

[a] [O] = (ato) = [a) = [o +a) = [0] a



Lemma

① is a well defined associative
,
commutative binary operation on 2n

[l) is the identity for Q

Proof ShowingQ is well defined

We want to show that [a] [b] is uniquely valued.

Suppose [a] = [al) and [b] = [b')

=> a = almodn) and b = b'(modn)

= a - al = kn and b - b = ne for some k
,
le2)

=> a = Kn +a' and b = nl + b

=> ab = (kn+a)(nl + b) = ab = ab'+ (al + bk + k(n)n

=> ab = ab(mod n)

=> [ab] = [a'b']

=> [a]@[b] = [a]@[b']

showing Q is associative : [a]
,
[b]

,
[c]e In

([a]x[b])x[c] = [a . b]@[]

= [(a . b) · c]

= [a · (b - c)]

= [a]x[b - c]

= [a]x([b]@[c])

showing & is commutative : [a] , [b]c In ,

[a]x[b] = [a · b) = [b · a] = [b]@[a]

Showing[1) is the identity : V[a] In
,

[a] Q1] = (a . 1) = [a) = [1 · a) = [1)Q



Theorem

(In ,
G) is a commutative group of order n

Proof : From previous lemma
,
I is a binary operation ,

commutative
,
associative with

identity [O]

V[a]cIn
,
[a]@[o] = [a+o] = [a] = [o +a] = [0] # [a]

We just need to show the existence of inverses

VIa]cIn ,
=Fa]eRn and [a]@[a] = [a-a) = [0]

= [-a][a]

Hence (In
,
#) is a commutative group ,

with identity [O] and inverse [a]
↑

Convention

i) In always means In underI

ii) We may drop O from Q and [] from [a] where the context is clear.

eg
: in 24
7 = 3

,

-

15 =1
,
7 + )- 15) = y = 0 = 3 + 1 = 4

Table for (12
,
⑪)

T
This is the "same as" (T

,
x) where T = Sl

,
- 13

Note : We write [a] [b] for [a] @ [b]

Dropping the [J ,
we have

(2s
,
@) (24 ,

@)

086 % · 86
01 23

O! 82 ? ↳
· 302

Neither of these the table of a group as [O] is not invertible ,
and it disobeys

latin square property
10 appears more than once



Notation : In In ,
sometimes we write

[a] = a and
n

= 55, . . .

., n -17

Definition

For neI,

In
*

= &[i]
,
[2]

,
. . .

., In-137 = In do3

Note : [x] + #** [c] + [0]= n/c

Theorem

Let p be prime. Then (2p*, @) is a commutative group, order p-1

Proof Lemma above : ① well-defined on Ep.

① is associative
,
commutative , identity [I] ,

[I]e&q
*

closure : Need to show Ip
*
is closed under Q

Let[a]
, [b]clp

*
=> pXa and pXb Note :

p prime

contrapositive => pXab pab => pa or pb
=> ab = 0(modp)
=> [ab] + [0]

=> [a]@[b] = [ab] = 2p
*

Hence X is a binary operation on Ep
*

Inverses : Need to show existence of inverses. [a] [a+] = [1]

Since pla ,
we have god(a , p) = 1 # (p/a and prime = gcd(a, p) = 1)

so I Site 2 st 1 = Ja+tp ·
Hence

[2] = [sa ++p] => sattp = 1(modp)
=> sattp-l = pk) for some KEZ

=> sa - 1 = p(k - t)

=> sa = 1(modp)
=> [sa] = 1 => [a][s] : 1

5536



so we have

[] = [sa + +p] = [sa] = [s][a] (and also [s]e [p
*)

Hence inverse exists

* Note :
p prime

Only integers that divide p is 1 and p

M

Table for

Do2 63

Note : (In*, @) is NOT a group ifa composite

Zn
*

= [[7], . . . . .

,
In- 1]3

Forn composite ,
Ata]e In

*

such that an

an => n= al for some leZ

=> [n] = [a][e]

=> [0] = [a][e]

Further 0(kn => [l]t In
*

Hence not closed under Q > NOT a group



2. Orders of Elements, Subgroups and Cyclic Subgroups 
General Associative Law

The general associative law : leave out brackets

For group (G , *) , by associative law

a + (b+c) = (a+ b) + c

But for 4 elements;

a* b * c * d

many ways to bracket. For example

(a+ b) * (c- d)

a + (b * (cd)

etc.

Lemma General Associative Law

For any group G and any a
,..., anEG ,

the product

a
,
* &z*... *an

is unambiguous
Proof : We show that no matter how



Powers in groups
For geG, we write

g=

gg
and

g=

ggg

so for example , (ab)= (ab) (ab)

Note : If ab = ba
,

i

. e. a and b commute then in this case

(ab)= (ab)(ab) = a(ba)b = a(ab)b = ab

However
In general (ab)2= ab

Definition

For neI and geG

g= (g .....g)
-

n factors

By convention

g = e

gn = (g !
....g ) = (g

-
m

Proposition Index Laws

Let G be a group.
For any gEG and Z,ZEI ,

we have

1) gz , gZ2 - gZitZz
2) (g z ,)z = gz ,zz

Note : We deduce

gzzzzzz =gzt
so that powers ofa commute with each other.



Notation:

Multiplicative Additive

x *
y xy x+y

identity e or 1 or eqor lg 0 or O
G

inverse x -x

power xz Zx

index laws (gz ,)
21

_
ziz2

z
,(zzg) : Izzig

gzigzz =gzitzz z
,gtzzg = (z, + z2)g

Orders of elements

Let G be a group .

For aEG, neIN , we have

O
a = e

,
a = a ...... a In terms)

an= (a) " = (an)
+

Also ee = e => e = e
,

we have

e= e ; e=

e
(e)= e" = e

i
. e.

e=eVzt])

Consider the list a G

a)= a)
,
a

,
a

....

so either atleast one ate or no are

Definition order of element at G

Let G be a group. For any aeG

The order of a written o(a) is the least neIN such that

a = e if such new exists

If no such n exists
,
then o(a) = -



Caution ! o(a) does NOT have the same meaning as the order of G

For
any aeG ,

we have

u(a) =1E)a =e) a = 2

So
e is the ONLY element of order 1

For any aeG
,

we have

ola) = 2 > a = aFe and ne

#> are and a = a

ola) =1 or 2 - a is self-inverse

Examples :

1) (IR*, x)
· 1 has order 1 Cidentity)
· 1 has order 2 ; j = 1 => x = - 1

· For xERR
*
15-1

,
19

,
s= 1 Une I => 0(x) = 0

2) ((*, x)

· i has order 4 since

it= i
,
i= -1+1

,
i= - i + 1

,
i4 = 1

*
· InfactK contains elements of every order.

To see this
,
consider zeD

*

z = reit

Want to find smallest integer such that z= I

z= Meino= v= 1 and einz= 1= no = 2k* (eiak)

v = 1 = r= 1 VEN and then no = 2k = O =LI
N

=> o can take any value



v + 1 = n=0

3) ((,
+)

·o(0) = 1 (identity)
· x70

,
0(s = 0 as x+ ... + x(n times) + 0 VEN

4) (GL(2 ,
1R)

,
x)

· The Matrix (j) has order

Theorem

Let G be a finite group and let aEG. Then

o(a) is finite

proof :Counting argument) :

The list

a , a, a, .... is an infinite sequence of a finite set

sequence must contain repeats , say

a = a where itj >a=as

=>a = aj - i

=> e = at and jieN
as j-cEIN,

we have o(a) is finite and ola) ji<
*

Examples :

If 0(a) = 4
,
then aa= a

"
= e =a

so-a,
a are mutually inverse

2
· a is self inverse

a5 = aat = ae ,

a = aa4 = ae = a

at= aa = aa = a

a8 = (a4)2 = e= e



Also in the direction

a= a, a= a
,
a4 = (a4)"=e = e

- so rewrite the first line to the second

O

- a

-54- e
,

a
, a 3,94578a

I

a,e
,
a

,
a, a, e

,
a

,
a, ae

,
a

,
a,ae

,
a...

For example, a= a43 = ea = a

Lemma Remainder Lemma

Let nEG with olal = n < *
.

Let Z
,
z'z] with z = ngtr where gree , On

Then

(1) =
a

(2) 0 =Stn => a + at

(3)az=e()nz() z = 0(modn)

(4)az= az E z = z(modn)

Proof :

(1) We have
= ant = langa

= e

= ar using index laws

(2) if OEStIn notice that Oct-scn so if
t-Sa= a

+
=> a = e = o(a) = t> # contradiction as o(a) = n

so a t at

(3)a=et)a= e

it O <<n => contradicts o(a) = n
.
Therefore

v= 0 = nz (remember 0[Vzn)
since ate for any i with OCiCn and OERIN



(4) a=a => az-z
=e(> n(z -z)(- z = z = (modn)

using (3)
F

Consequently if o(a) = <*, then

e
,
a

,
a

, ...., an

is a complete list of the distinct powers of a

Example

1) Let o(a) = 3. Then the remainders are 0
,

1 , 2 and

[az, ze2)] = Saa, my = de
,

a
,
ah and de , a

,
my =3

Also
a2= a7. 3 + 1

= a(a)

subgroups
Definition Subgroups
Let G be a group.

Let HEG.

Then H is a subgroup of G denoted HEG if

(i) a , be H = abEH closure

(ii) acH=H closure under inverse

(iii) eH contains identity => H +0

Note : HGES H is a group under the restriction of the binary operation in G to H

The converse is also true
,
that is

VH-G
,
HIG (H

,
0) is a 9roup,

'o' is the restriction of binary operation
of G to HX H

proof : It is a group under same binary operation H is closed under this operation.

Since H is a group,
it contains an identity sayfeH > f=+ EG and e-e in G

=> e=f and eeH
Let acH

.
Inverse of 'a' in H is an element b such that

ab =f = ba (* )

But by above e =f => def is unique satisfying (*)
.
Hence d = a'eH.

#



Examples :

1) I Q R K

2) &** I* BUT (I*, X) is NOT a subgroup of (1,
+)

3) For new
,
n2 = Enz : ze2Y leg 22 = 5 .. .

.
-4

,
- 2

,
0

,
2

,
4.... )

Then n&<2

4) SL(n , IR) = [AEMn(IR) detA = 17 Then SL(n , IR) = GL(nIR)

proof :

As def A = 1 + 0 FAESLIn , IR) => AtGLIn , IR)

=> SL(n , IR) = GL(n , IR)

(iii) det In= 1 => In = eSL(n , IR)

i) Let A , BESL(n , IR)

det (A B) = detAdetB = 11 = 1 => ABESL(nIR)

ii) det A= 1 =

z
= 1 => AES((n , IR)

det A

Hence SL(n ,
(R) = GL(nIR)

5) For any group G , Se3-G ,
GIG

Definition Special Linear Group
SL(n ,
1) = [AEMn(IR) : det A = 1)

CyclicSubgroups
Definition

Let G be a group ,
aEG .

We define

(a) = \a2 : z2]

In 't' notation

(a) = 5za : z2)Y



It (a) = 0 then a==> i =j

If o(a) = 0 then if isj and a==> -e contradiction *
-
2 - 1

so ... a ,
a

,
e , a ,a ... are all distinct => (a) = -

Sincea = a> a= e
,

so if ji to,
we would say O(a)Ejil

Hence if ola) =*
,
(a) = o

If o(a) = new
,
then from remainder lemma

,
(a) = Se

,
a

,
a

, ....,
a 7 and e

,
a

,
a

, ...., a "are
distinct

if 0(a) = n
,
(a) = n and (a) = Se

,
a

,

...., any

Lemma

For any aeG , we have (a) is a commutative subgroup of G and

(a)) = o(a)

Proof

We have shown (a) = o (a)

e = a
°

(a)

if an
,
ac<a)

,
then aha= ant (a)

(ah)"= in (a)
,
hence (a) G

anal= ant = a hence (a) is commutative
T

Remark :

If o(a) = n
,
then at= an-

a an etc

If his even olan"= an1

Definition Cyclic Subgroup
i) (a) is the cyclic subgroup generated by a

(ii) a group is cyclic if G = (a) for some aEG. Then we say a generates G



Proposition
Let G be a group with G =n finite

Then G is cyclic EacG with o(a) = n

Proof :

For any acG ,
<a) G

G =(a) ()(a) = G

= (G) = 0(a)

#> o(a) = n
#

Examples

i) I is cyclic as X = (1) = <-1)

ii) Q is not cyclic as if Q = (a) then ato and Q ..., -29,
a

,
0

,
a

,
29, ....7

But - Q but

iii) In In ,
0([1]) = n as

[1][1)0 .. . . [1] = [n) = [n]

so In is cyclic and In =< [i]

iv) In K
,

we have K= Se
,
a

,
b

, c and o(e) = 1
,
o(a) = o(b) = o(c) = 2

HenceK not cyclic
(e) = (e)

,
(a) = Ge, 97,

(b) = Se
,

b), <)= Se , c)

Theorem

(1) Let G = (a) be cyclic of order nuv. Then G has a subgroup of order

(2) Any subgroup of a cyclic group is cyclic
Proof :

(1) (a) = n = uv = o(ak) = v (Exercises

=> a"generates cyclic subgroups of order
=> (a") = Se,

a"
,
a..., any G with can = v



(2) Let H-G where G = <a) is cyclic
Suppose H = SeY

, then H = (e) => H is cyclic
Assume HEdeY

. So GitH where itO . Then a (a)CH H a subgroup
So we have ,H ,

so we can find a least neI with aneH (wellorderinga
Let EH

. By division algorithm , Eq ,
reI

j = ng + v
,
Ovh

Now a = ai - nq = (an)-
*
EH as a and EH closure

Since n is least
,

v= O else we contradict the minimality of n

v= 0 = j = nq
=> nj

we now have (a) [H(a:· H = Lab) and so cyclic ↳

Examples :

1) In Q*, we have (2) = [27, zel] = 5 . . . ., 4,
2

,
1
,

2
, 4,

...7

2) In I
,

we have (2) = [2z : ze21] = < . . . .

:

-4
:
-2

,
0

,
2

,
4 .... 7

2) InDo (2) = S[0]
,
[2]

,
[4]3 , <00 , 0(2)20

3) In (2**, Q) ,
the element [3) has order 6 as dropping 'IS'

3 + 1
,
3= 2 + 1

,
3= 6 + 7

,
34= 4 + 1

,
35= 571

,
3= 15 = 2

So I has subgroups of order 1
,

2
,
3

,
6 by Theorem

, pg 30.

[13 = (36) has order 1

I* = (37) has order 6

(3) = 52 , 4 ,
17 = (2) has order

(33) = 56
,
1) = 16) has order 2



3. Symmetric Groups
Symmetric Groups
Let X be a non-empty set X + 0 (often X = [n] = 51, ...., nY ,

neIN)

We write IX for the identity map Ix
: X-X

. If X = [n]
,

we write In for Fin

Definition Symmetry
Let X be a set. A bijection 0 : X-> X is called a symmetry
We denote by Sx the set of all bijections from X to X

.

Sx = 20 : 0 a symmetry of XY

If X= [n)
,

we write Sn for Sins

Notation: The binary operation represented by 'o' is composition of a function

Proposition Symmetric Group
The pair (Sx ,

o) is a group ,
the symmetric group on X

Proof :

Let 2
, BeSx .

Then

2 : X-X and B : X-X

are bijections. Certainly
Lop : X-> X

Also as 2 and B are bijections, so is Lop => LoBEX

Therefore o is a binary operation on Sx

Associativity : Composition of functions is associative

Identity : Ixe Sy and for any desx,
we have

20 [x = x = [xo

Inverse : Finally, if LeSX ,
then the inverse function < : X- X exists and is a bijection

c'ESx and Loc = Ix =Cox

so (Sx ,
o) is a group

*



Remark :

fig : A + B
,
+ =

g means +(a) =g(a) VacA

Note: We often drop mention of '0

Example

1) n = 1 ; Si= (11) ,
the table is

I

(2) n = 2

Sc = &12 ,
2) where < : x2+ Xz ; <(1) =2

,
<(2) = 1

The table is

0 Iz L i) <(1) = <(x(i)) = x(z) = 1

IzIc L

ii) <=(2) = <((2)) = <(1) = 2
↓ < 202 = 12

(3) n = 3
,

we have Izes ,
ets where

e(1) = 2
,
e(2) =3

,
%(3) = 1

Twovow notation

We can write deSn as

2 = 12 ...... N(a(1)a(2) .... <(n)
For example in /3) above

e =(3)
Example Let BeSy given by

B= (2524)
This means that p(1) = 2

, B(2) = 3
, p(3) =4, B(4) = 1



u =(243)
(Bv)(1) = p(r(1)) = B(z) =3 p(r(3))= p(u(3)) = p(4) = 2

(Bv)(2) = p(r(z)) = B(1) = 2 p(v(4))= p(u(4)) = p(z) = 4

so pu = (2)
Working out up ,

we have

-B = (2434)(243, 4) = (14324) + Bu
Remark :

If O
, TESn ,

the composition is abbreviated to of referred to as the product of O & T

caution ! Permutation product is applied right to left
OT : Apply Y first theno

Remark :

In two-vow notation
, for xeSn ,

each element of [n] = [1
, ...., n) occurs exactly once

on the second row

....... NIt < =(y) ....
<(n)

Then if <(x) = <(y) ,
we have x =

y (d
is one to one

As a is onto
, any ze51, ...,nY appears on the second vow ,

we have

z =<(t) for some t
, so

·(in)
Note

Thus the secondvow is a permutation/rearrangement of the first.
As there are n ! permutations of n elements

Sn = n !

· S1 = 1 ! = 1 · Se = 2 ! = 4 · Sy = 3 ! = G

· S2 = 2 ! = 4

· Sy = 3 ! = G



The 6 elements ofby are

Es = (3) 1=(23) = 23)e= Is

= (12) = (b23)8 =( ?)
Multiplication table

· Is e 2 0 E2 03

Is Is C e2 0 0 O3 As for example

eee2 Is O 0
,

02 20, + 0, 2

el
22

In & O2 Os O, Sy is NOT commutative

0
.

0
, 02 Os Is e e

28 0 0
,
225 C

-3

2

5 Eg 0
, 02 ee T

-3

Cycle Notation
some elements in In can be written as cycles
For example less ,

we write e = (123)
,

we mean

e(1) = 2
,
e(z) = 3

,
e(3)=

we would get same function by writing
(2 31)

,
(312)

Definition Cycle
A cycle in Su (of length m = 2)

x = (a, . . .,
am)

where a
, az , .... Amed1, ..., n) and difaj for ifj

It is the bijection defined by
< (ai) =azclaz) = as, ....., dam-l = am

,
slam) = a,

and
x(x) = x Voed1,...., n3 Sa, ..., amY fixes other elements

MIN



We can write

a
,

< az< .. ... Am-1 "Ama1

cycles from left to right ; they can have any starting point

Cycle decomposition
Not every permutation ,

however every permutation can be written as a product of
of cycles

Example In So

e = (23)
This means 1121 311

In cycle notation e = (123)
. Similarly e(132)

For E = ( ! 23) : CH3H2 11 fixed

=> 0 = (2 , 3)

Similarly 02 = (13)

0 = (12)

Example

B = 12345)S
Here we have 14 2 1 => (12)

31445437(345)

Therefore p = (345) (12) product is composition

Remark : In the example above product is composition

B =

(345)(firstdo next

operation done from right to left.

we could also have written B = (12) (345)



Mixing notations

0= (2, 345) = (12) Es

so we have olll = 2
, 014) =4

You could write (2) (1) = 2

S tend NOT to

or (12)(4) =4

Note :

1) In cycle notation
, domain is understood

2) (a , az ... . am) = (a2az .... ama , = .... = (ama , 92 .... am-I

so cycle notation is NOT unique
Examples :

1) In s5 (3245) (124) = (12345) = (14)(253) (not a cycle)

Products of cycles do not have to be cycles
Note :

Compose cycles from right to left , they are functions ; cycles cycle from lefto o

Inverse of a cycle
The inverse of the cycle

a
,
ka...... I Am Am A

,

is the cycle
Am'Am- .... If az it d

, Am

Hence
(a

,
az . . . . am)

*
= (amam ..... a

,
)

Observe that

(a..... am)(amam- 1.
=

aza ,
) = In

(amam-i .. - aza ,
)(a

,

.... am) = In



Lemma

Order of a cycle of length m is m

Proof:

Let <= (a
, ac

.... am) ESn. Then

x(a ,) = a2

& (a,) = x((a ,)) = as

-m
-

(a , ) = am

am(ai) = <(am) = a
,

Hence smallest K such that <"(a) = a , is m

Also the same argument gives(MCai) = ai 1 < i'm

Also <(x) = x Voda, . . ., am) => <M(x) = xVx (a, ..., am) .

Hence o(a) = m
*

Example : Ss : the 6 elements of Sy are

Es = ( !3 ) e = (233) = (123) e=(2) = (13)

% = ( ! 33) = (23) = (2) = (13) 8 = (233)

dis) = 1 0(e) = 3 d(e) = 3 old) = 0(0) = 010) = 2

Note :

1) Sy = 3 ! = 6 and 1
,

2
,
3 are proper divisors of 6

2) Sy is NOT commutative as for example

20 = (123) (23) = (12) = 0 + 0
,

9 = 02

3) Cycles NOT commutative in general
(124)(35) = (24345) = (35)(124)

and also (12) (35) = (35) (12)



Definition Disjoint Cycles
C cycles are disjoint if they have no elements in common

(a, ..... am) and (b, .... by) are disjoint if

Sa ,
. . . . amY 196 ....... bih = 0

Proposition

Disjoint cycles commute i . e .
d

, BESn are disjoint cycles then
d B = BL

Notation: For disjoint cycles < , B

Write d = (a, .... av) B = (b ,
. . . . bm)

where Sa , ..., ar 15b , , ..., bmY = 0

Proof :

Let eda , ,

. . .

., ar
,

b
,

. .
. .

, bmY

<B(x) = x(p(x)) = x(x) = x

Ba(a)= p(a(x)) = x(x) = x

So ap(x) = py(x)
Consider a : Esb, ...., bmY we have

< p(ai) = x(p(ai)) = x(ai) = di + 1 plai) = ai B fixes at's

also Balai) = Bla(ai)) = Blait) = ai+ V + 1 = 1

=> <plai) = Balai)

Similarly (2p)(bj) = pa(bj) Vbjeda , ...., av

Hence as (B)(y) = (BS) (y) Vy esl .....,
nY

, we have

<B = BC #



Proposition Cycle decomposition
Let LeSn

. Then

2 = 0
, 02 .... Uk

where U
, , ..., Us are disjoint cycles .

This expression is unique except for the order in which the cycles are written

We interpret the empty product as In

Proof : Let deSn

Consider list of numbers 1
, ..., n

Choose the first i in the list such that <(i) = P (if nosuch exists then
= In and n s

Consider the list

i =(i)
,
cli)

,
(i)

,
g'(i) ...

list must be finite as it is contained in 57, ..., n1 and so must contain repeats

Suppose that <"(i) is the first power to be repeated and <"(i) = <"
+(i) where < O is

the first repeat

The inverse of 2" in the group Sn is a"so that

i = In(i) = 2"((i) = j4yu
+
(i) = y (u)+(u+v)(i) = (i)

the conclusion is that20 is the first repeated power ,
that is n = 0

.

Also (i) is the first

repeat of the list.

i
,
ali), (i) , ...., d (i)

are all distinct. Put K
,

= V-1
.

Let O
, be the cycle

r, = (i
,
(i)

,
(i), ....,

d'"(i)

using the division algorithm ,
we can show that for any ze 2

(i) t (i
,
<(i)

, &(i), .
. . .

, "(ilY

It <(j) =j Vj not in the list

i
,
ki)

,
(i), ...., (i)

we stop . Otherwise pick the smallest ; not in the list and consider the elements

j, (j) , &(j), . . .. of 51, ..

... n?



We cannot have
(i) =(j)

for any OUIV as this would give

j =2(i)

contradicting the choice of j (not on list of i)

Arguing as above
,

we obtain a cycle 22

-z = (j , <(j) ,

. . .

., a* (j)

for some K2 ; notice that is cycle is disjoint to V,

Continuing ,
we obtain disjoint cycles X

, ...., Or until all elements of 51...., nY is used up and by
construction

x = V
,
....Up

showing uniqueness ,
if also

x = 6..... Ss

for disjoint cycles S
,..... S

,
then notice that for any led7 ,

2, ..., n1 we have that

(l =1 10: 146;

If I appears in Un and Sp ,
then without loss of generality ,

we can assume that

Un= (1
,

. . . .. ) = (l
,
a(e)

, . . ., <(1)

where <
P+ (e) = 1. But since we can also assume Sk begins with I , we have that

Un = Si

Since disjoint cycles commute
, we can also assume h= l= 1 so that by cancellation

.....V = G ... Ss

An inductive argument now yields thatVes (after relabelling) Wifi for III
*

Definition Cycle Decomposition

The decomposition
2 = 2

,
.... Uk

as a product of disjoint cycles is called the cycle decomposition of C



Example :

Write in cycle decomposition

1) < =

1234567 == (1327) s( S

2) (24/7)(537) = (175324)

3) (537)"(2417)" = ((2417)(537)) = (175324)" = (423571)

Recall : Since disjoint cycles commute
,
it

r andS are disjoint then US So

It follows that
(rg) = yzgz Vz]

(general proof in exercises)

Example : Let a = (123)(45) ES5

Recall 0(123) = 3
,

0(45) = 2

So < FIz

2= ((123)(45))= (1237(45)2= (132) + 15

2= ((123)(45))3 = (123)(45) = (45) + 15

GE ((123)(45))4 = (123)4(45)" = (123) + 15

= ( (123)(45))5 = (123)(45)* (132)(45) # Is

c= (123)(45)) = (123745) = 15

so ok) = 6 = km53 , 27

Proposition

Let deSn , <In .

Write

2 = V
, 82 . ... Om

are disjoint. Suppose the length of Gi is li for Lim. Then

0(x) = KmEl
, ,

. .

.,
emY



Proof : Suppose CESn

Let the cycle decomposition of a be

2 = 0
, 02 . ... Um

where length of V; is li.

We know the order of Vi

dri) = li Vim

Since disjoint cycles commute,

c= (r ,
.... Um) = r.....r for any

se

If s is a multiple of li ,
then r"= In so that if x is a common multiple of all 2:

I= r.... r = In: " · In = In

Suppose that ye ,
c = In and

y is not a common multiple of l ..... Im .

Since OT's commute with each other ,
we can assume thatl1 does not divide y

y
=q+ where O << 11

We know that r = r2. Let

v = (a
,
a...... ap,

Since the 2; are disjoint ,
a , does not appear in 82 , ...., %m. Thus

rj(a) = al for 2jIm

Now
((a

,) = (r ,402 ..... rm)(a ,)

= r
,4(824) ... (rm(a ,) ... )

= v
,4) ... (rm , (a ,) ... )

=... r
,
4(a , ) = r

,
(a , ) = a

, + u
+ 9

,

Thus a # In # contradiction

Thus C= In Ex is a multiple of li in

Hence order is the leasts

o(a) = KmEl
, ,

. . .

, Iml #



Example

(1) C =( 23457)
2 = (1724)(56)

o(x) = km94 ,27 = 4

(2) B= (123456710)
B = (21)(345)(610117)(89)

o(p) = km (2
,
3

,4 ,
2) = 12

Warning : Powers of cycles do not have to be cycles ,
e . g

(1234) = (13)(24)

Transposition

Definition Transposition

A transposition is a cycle of length 2

If <= (u
,
v) is a transposition,

o(x) = 2 = a = 2)

=>a is self inverse

we have (n v)" = (ru) = (nv)

Let (1234)ES4
Then (1234) = (14) (13) (12)

Fact : For any (a, ..... am)eSn
,
(a

,
..... am) = (ama , ) (ama, .... (aga ,)(a29 ,)

product of transpositions

Proposition

If deSn then a is a product of transpositions



Proof : We regard In as a product of 0 transpositions (also for n22
, In= (12) (21)

Let d = In
,
then <= 0

,
....

8 for some disjoint cycles O ,
1 iK

Replace each 2; by a product of transpositions above
#

Example :

With p = (12) (345)(610 117)(89) = (12) (53)(43) (76)(106)(89)

Remark :

1) Transposition representation NOT disjoint
2) NOT unique . B can be written as

B = (32) (13) (52)(42)(32) (76)(116) (106)(89)

Definition Transposition number

The transposition number TCo) of an arbitrary
non-negative integer computed by decomposing o intoPermutationresnisdefinedtobetheum

N

T(0) = [ (v - 1) (#r-cycles)

In other words
,

we take weighted sum of the number of disjoint cycles ,
where the weights are

what we believe to be number of transpositions to factorise each cycle
Note : Since the decomposition into disjoint cycles is unique ,

TCO) is unique (well-defined

Also T(In) = 0

Example

(1) OESio

o = (38)(17 9)(254106)

T(0) = 1 .1 + 2 . 1 + 4 . 1 = 7

(2) OES
1 5

o= (38)(179)(254106)(11 12 13 14 15)

T(o) = 1 . 1 + 2 . 1 + 4 .
2 = 11

(5 - 1)



Note : T(o) is the minimum number of transpositions to completely factorize 0.

Theorem Parity Theorem
Let OESn .

The number of transposition in any complete factorization of O has the same

parity as T(o)

i . e. it is always even or odd

Proof : Proof has 2 parts

Part 1 : Consider GSn being multiplied by a transposition Tolab) to form

o= To

When O is decomposed into disjoint cycles ,
there are 2 cases

1) CASE 1 : a ,
b contained in same cycle

(ab)(ac, ...... ()(b d ...... ds) = (b d..... do ac, .... c)

T(o) = T(o) + 1

2) CASE 2 : a
,

b are contained in the same cycle
(ab)(ac ..... b d

,
... . ds) = (b d , . . . . ds)(a .....a)

T(o) = +(0) - I

Thus multiplying any permutation changes its parity
Part 2 : Using induction ,

let P(K) be the statement
11

If O is a product of K transpositions then K has same parity as To)"

The base case P(1) is true as a transposition being a 2 cycle has transposition number
1

For inductive step , suppose P(K) is true and o is a product of K + 1 transpositions.

0 = Yk+14,..... Th

Since transpositions are self inverse

Tk5 = Tr . ....

1

Hence by the induction hypothesis ,
TCTKHO) has the same parity as K

. Therefore by
part7,

Ho) has opposite parity to I same parity as It

=> P(k + 1) is true #



Definition Sign
Let LeSn

. Then a is evenlodd if x is product of even lodd number of transpositions
The sign of a denoted sgn(a) is defined by

so Sg
: Sn - 51-14

↓ is evensyn() = 4 -E x is odd

Example So

Evens : Is ,
e = (123) = (13)(12) = (132) = (12)(21)

odds : 0. = (23) Oz = (13) 0 = (12)

Consider G , BESn .

Write

L = M ,
.... Mr , B = r

,
.... Vs where Mi, Vj are transpositions

IEIEr
,

1 =j's

Then <B = M ,
. . . .MrU,

.... Ug is a product of uts transpositions

a BXB syn(a) syn(p) syn(ap)
I I I

even even
eve

a I - I - I

odd odd - I I - Ieven

odd odd even - I - I I

Definition

Let neI
. Then

An= EdeSn:d is even?

Proposition Alternating Group
We have A Sn



Proof :

In is even
-> Int An

Let <
, BEAn . Then 2, are even .

From the table

2
, +An > XB is even

=>XBE An

still with LEAn ,
write L =M ......Mr where Mc are transpositions and is even

Then c = (M, Me ...Mr= CMMit .... MIMT) = Mr Mo
. .

MM ,
is a product of even

transpositions
Hence
E An

Therefore An Sn
↑

Note :

As = [13
,

e
,
34 = <> and Asl = 3 =

=



4. Cosets and Lagrange’s Theorem
Lagrange's Theorem : Let G be a finite set ,

HEG. Then

H G

strategy :

&
partition a into blocks of the same size

,
one of which is it

Cosets

Definition Left Coset

Let G be a group , HEG and ac G

The left coset with coset leader a is

aH = Sah : heHY

Note :

eH = Seh : he HY = EheH) = H

So H is a left coset

Example :

1) Group So, subgroup H = [Is , 07 = <82

IgH = EIgIg , Ig 84 = EIzo = H

2H = Ge13, 2827 = Se
,

0
,
7

e2H = Ge13,
987 = 39

, 04

0, H = 50 . 1s
,

0, 827 = 50 ,
e7 = eH

02H = [02Ig ,
020m = [OzIg7 = H

03H = 55353 , 087 = 503
,
e37 = EH



Notice :

(a) Coset leader NOT unique :

IgH =H = H

0
,
H = H

8jH = eH

(b) Distinct cosets are disjoint
(c) Cosets have the same size MH = 2 = H VMESs

(d)Sz = HueHueH

Example :

Group (R*, X) , subgroup (IRt, x)

~ IRt = Gus : Serty = dus: ol =St
where IR

=

EveR : <0?

Let <0
. Then us O for all 50 ; if h< O

, then =veu urt=
t

Similarly forrso

Notice :

(a) Coset leaders are NOT unique :

IIR+= 21Rt
,
etc

(b) Distinct cosets are disjoint
(c) Cosets have the same size : A bijection IRT > R : ex ;

(d) R
*

= IR+VIR-



Lemma The coset lemma

Let HEG where G is a group

Define relation H on G by thevule :

anybbacH

Then H is an equivalence relation on G and

[a] = at

proof : Let aEG. Then

Reflexive : aG-eeH so awy a

symmetry : Suppose that any b
.

So baeH . Then

(b a) eHas HEG .

Hence a(b)= abeH = brya closure under inverse

Transitivity : Suppose a , b
,
cett and anbr BacH

,
beH

=> ibbacH closure

=> jaet

=> any
Hence ~ is an equivalence relation

we have [a] = EbeG : by aY
= [beG : be + Y

= EbeG : b = he HY

= [beG : b = ah
,
he+Y

= at

Reminder : For any equivalence relations we have
#

arb [a] = [b] #) be [a]

#> ac [b]



corollary
Let HEG where G is a group and let a, b

,
CG

1) a t att

2) ceaHE) cH = at

3) aH = bH #) aH1bH + d

4) aH = bH > bacH

5) aH =HE) aH

Proof :

(1)ac[a] = at as an a

(2) (aH = [a] => (H = [c] = [a] = at
↓
aH = ch

(3) Equivalence classes partition a set
· a

(4)aH = bH =) [a] = [b] ·C

· b
# any b

# bact

(5) aH = H (> aH = eH

#> eacH

# atH
*

Lemma

Let HIG where G is a group. For any a
,
beG

aH = bH = H

proof : Define function

Xb : H > bH

xy(b) = bh

Onto : clearly Xp is onto since if bhebH
,
bu = Xp(h)



One-to-One :

If Xp(n) = x y(k) => bh = bk left cancelation

=> n = k

Hence Xy is a bijection => H = bH

Hence for any a
,
be H

,
H = bH = aH

Definition Index

If HEG then [G : H] is the number of left cosets of H in G

[G : H] is the index of H in G

Lagrange's Theorem
Theorem Lagrange's Theorem

Let G be finite group and HEG
. Then the order of H divides order of G

H G

Moreover

a
= [G : H)

Proof : Let K = G : H) and anH = H
, azH , ...., apH be distinct left cosets of H in G

By lemma above
aiH = H ; Li < K

and

apHnajH =di1[i <j < k

For any geG , we have gegH . Hence

G = HU azH. .... VapH

and then
G = H + azH + azH + .... + akH

= H + .. . . . + H (k) terms)

= KH

So H G and q = k = [G : H)
#



Note : We could also have used right cosets

Definition Right coset
Let G be a group , HEG and ac G

The right coset with coset leader a is

Ha = Cha : heHY

The dual argument leads to Lagrange's Theorem

Consequently : if G is a finite group and HEG then

number of left cosets = number of right cosets of HinG Exercises

Application of Lagrange's Theorem
G is a group ,

a G

(a) = [a" : ke2Y

is the cyclic subgroup generated by a

If G is finite then ola) is finite and if olan , then

n = Sail and (a) = Ye , a
,

a 2, ..., an-1]

Corollary Order Corollary
Let G be a finite group

and let at G

Then ola) divides G

Proof :

We have (a) = o(a) and (a) G by Lagrange's Theorem

Consequently a =e from remainder lemma . r

Corollary
Let G = p where p is prime. Then G is cyclic and generated by any of its non-identityelements

proof : Let Gl =

p where p is prime .

Let acG and ate

Since o(a) G and o(a) #1 ,
we have o(a) = p

so (a) = o(a) = p = G
.

Hence G = (a)
*



Corollary
Let n = 2

. Then An =

n
!

Proof : Recall An = EESn :< is even

Let On = EESn : < is odd ? = In An

So Sn = And On (disjoint union) Sn = An + On

claim: On = (12)An

We have (12)An = 5)12)C : CcAnY On

On = <(12) (12) p : Be OnY (12) (12) : In
even

[ (12)An

Hence (12)An ? On

By lemma above

An = (12)An : On => Sn = An + On

=> Sn = n != 2 An

=> An =

A
!

↑

Theorem Fermat's Little Theorem

Let p be prime and ae I
.
Then

a aP(modp)
Proof :

If a = 0(modp) then result is clear

If a + 0(modp) then [aJe I
*

2
p

= p- 1 so (a)
P"

= (1) => [aP ) = [1)

=> aP" = 1(modp)
Hence aP almodpl

#



5. Normal Subgroups and Conjugacy
Definition Conjugate
Let G be a group and

let a
,geG .

Then

gagt is a conjugate of a

Define a relation ~ on G by
and bis conjugate of a

=>> b = gag" for some geG
Note : gag is also a conjugate of a as

jag = g(a(g))

Lemma

~ is an equivalence relation
Proof : Let a

,
b

,
ce G

Reflexivity : We have a = eae > and

Symmetry : Suppose and .

So begag' some geG. Then

a =j bg => bra

Transitivity : Suppose and and brc
. Then begag' ,

c=bL for some g ,
heG

so c = hbh = h(gag')n
= (ng)a(g h )

= (hg)a(ng)
+

=> anc

Equivalence classes :

[a] = [bcG : amb) = Egag : geGY
Definition ConjugacyClass
The equivalence classes under n are called conjugacy classes

[a] = [beG : amb] = Egag : geGY



Example :

1) If G is commutative and ard
, then

b =gag = agg = ae = a

so~ is an equality relation
2) Let A

,
PEGL(n, ). Then

det (PAP") = det P detAdetP
+

= (det p) (detP-t) (det A)

= det(pp")det(A)
= det I" det A

= det A

Hence if AESL(n , 1)
,
then if ArB , then BeSL(nIR)

3) InSo with p = (12) (354) => p" = (12) (345)

Let < = (125)

Then
Bap = (12)(354)(125)(12)(345)

= (142) = (214)

= (B(1) &(2) p(5)

4) Leta = (a, . . . . . . ap) eSn .
Let JESn

we claim : var" = (r(a ,) +(a) ... ... r(ax)

proof : Suppose x = r(ai) 1 <K

Then (war")(x) = var"r(ai) = va(ai) = r(ai + 1)

so (020")(0(ai) = r(ai + 1) k + 1 = a

If ce(r(a , ) , ... , plak)9 then 0 "(c) Ya, . . .. and

Then Var"() = vr"(x) = x as a leaves o (e) fixed and

(0(a , ) .
. . . v(a,

))(x) = x

so war" = (o(a) .... u(a)
*



Example
2 = ( 13) (26) : Cycle type is 12 , 2]

B
= (123456789) = (145)(23)6

Cycle type : [3
,

3
, 2)

Theorem

Let 2 , BESn . Then

do #L and i have the same cycle type
Proof :

If C = V
,z ..... Up - cycle decomposition , length of G is li

Then 526 = So
,

. . . ..UkS"= SU
, In In ..... InVis

= (6r
,51)(5825) ..... (58

,
5")

We have sais is a cycle of li
Moreover if U

,
=(, ..... )

, then

88 ; 5= (6(2) ,
. . . . . .S(y) and Su%

6" = (s(x , ) ..... Sie
j
)

These cycles must be disjoint ,
for if

s(in) = Skil => Sin = a by definition of bijection
Hence B = 62S" and I have the same cycle type
The converse is also true· Suppose that

B = M, . . . . .Mm

is a disoint decomposition of B with the same cycle type as C
,

so that the length ofJ
Mi is I ; for 1[i < M.

Write

My = (yz ..... ye
Then

[xI ,.. . . . , ,
. . . . . .. 3 = Eyz, .. ... ye, . . . . . yem?

= l
,

...... + Im



Let 0 : (7, . . . .

., n) Es .... ... se... ... sm?)
~ 17, . . .

.,n) Sys, . . . . ., ye, ....., yum3) be a bijection.
Define SeSn by

Slej) = y
and for zede !......, e, . . . .. , , . ... sm ?

f(z) = 0(z)

Then
628" = So, .. ...Ums

= (SU_57) ....... (SUmS") = M ,
. . . . .Mm

= B
E

Example :

Let x= < [4 ,
(12)(34) ,

(13)(24)
,
(14)(2377

= At as every element of R is self inverse
,
Ipek

(ab)(cd)(ac)(bd) = (ad)(bc)

=> Multiplication is closed on 22 and 1 As
Further

,
if (ab)( d) +R, then for JES4
u(ab)(cd)v" = v(ab)u+ v(cd)

= (u(a) u(b))(v()v(d)) = R

Theorem

A has no order 6 subgroup.

We have Ap = 4 = 12

Proof : The cycle types of non-identity elements of Sp are

[2]
,
[2

,
2]

,
[s]

,
[4]

Elements of cycle type [2] are of form (ab) even

Elements of cycle type [4] are of form (abcd) = (ad)(ac)(ab) odd

Elements of cycle type [2 ,
2] are of form (ab)(cd) even



Elements of cycle type [2] are of form (abc) = (ac)(ab) even

So the elements of Ap are [p ,
(12) (34)

,

(13) (24)
,
(14) (23) ,

(123)
,
(132).- E(124) , (142) ,

(134)
,
(143)

,
1234) . 1243) 3

SoSuppose Ap ,
H = 6

. If H contains 2 elements of type [ , 2) ,
it must containa

(ab) (cd)(ac)(bd) = (ad)(cb) closure

Also all elements of [2 , 2) type are self inverse. Hence

k = ( [4 ,
(12) (34)

, (13)(24) , (14)(23)] = H contradicting Lagrange's Theorem.

as 4-6 ,
K + (H)

If (12) (34)H and = labceH
, then

6(12)(34)2 = H => ((1)((z))(a(z)x(4)) = H

can only have one [2 ,2] element. To avoid contradiction , we have

(12)(34) = (x(i)x(z))(x(z)a(4)

we could have

(12) = (x(1)x(2)) (34) = ((3)d(4)) - contradiction

Of

(12) = (x(3)x(4)) and (34) = ((1) <(2) - contradiction

SoH consists entirely of identity and 3-cycles .
But3 cycles come in pairs

=> H = odd

=> contradiction

Hence no such H exists.
#



Normal Subgroups
Definition Normal Subgroup
Let G be a group and HEG .

Then H is a normal subgroup of G denoted HEG if

VgeG VheH , ghgteH closed under conjugation
i.e. It is a union of conjugacy classes

Example :

(1) HEG where G is commutative
.

Therefore for any geG ,
heH,

ghg = hgg" = h
.

So H & G

2) We always have del G
, G-* G since gegt-e

3) For LESn and Be An

sg(xBc
+ ) = Sg(x)sg(B)sg(x-)

= sg()sg(t -)
= sq()
= sg)In) = 1

=> xBC"EAn and And Su

4) Let H = S1g
,
02]

20e" = 20 = #H . So H*Ss

5) SL(n , 1) < GL(n , IR)

If AESL(n , 1) and PEGLIn , IR) then

det(A) = det(PAP")
,

we have PAPESL(n , 1)

So SL(n , IR) & GL(n, IR)



Simple Groups

Definition

A group G is simple if del and G are the only normal subgroup of G

Proposition

At is not simple

Proof : We have shown

1 ! A4 *



6. Homomorphisms
Homomorphisms and isomorphisms

Definition Homomorphism and isomorphism

Let (G
, 0) and (H , *) be groups and let

0 : G - H

be a map .

i) O is a (group) homomorphism if Va ,
beG,

0(aob) = 0(a) * O(b)

ii) O is an isomorphism if O is a homomorphism and O is a bijection

-
O b * O(b)

a a ob 0(a) O(a) * 0(b) = Plaob)

-
Examples :

i) Let G = SeY
,

H = 2t7 be trivial groups. Then

0 : G - H

O(e) = f

is a homomorphism since only products in G are

ee = e and Plee) = O(e) = + = + = 0 (e) O(e)

clearly O is a bijection-> isomorphism

ii) < :T= 51 ,
- 14 c Sig

,
5) given by

all) : Is <( 1 = 0,

is an isomorphism

proof : clearly d is a bijection. We have

x(l . 1) = a(1) = Iz = [31z = c(1)x()
all- 1)1) similar

a(l)- 1)) = c ( 1) = 0
,

= 130,
= x(1)x)- 1)



2)) - 1)(- 1)) = x(z) = I
y

= 0
,
0

,
= 2( 1(d( 1)

Hencea is an isomorphism
#

(3) O : /R-R
*

given by
O(x) = e

is a homomorphism since

Voy P( +y) = e
+
Y

= eey = 0(x)0(y)
O is not onto since IMO =I not an isomorphism

O : RR-RR+ is a bijection=> isomorphism

4) det : GL(n , R) < R
*
is homomorphism

det (A B) = detA det B

Note: det is not an isomorphism for n22

t
eX :

net172,0) = 2 =de o
5) 8: T= 51

,
-19 given by

P(e) = 0(a) = 1
,
0(b) = 0() = - 1

is a homomorphism

proof :

1) Olael = Pla) = 1 = 1 .1 = 0(a) O(e)
.
Similar for eack



Lemma

O :G- H is a homomorphism. Then X gCG ,
zeZ

i) 0((q) = e
+

ii) 0(g) = 0(g)
iii) 0(gz) = O(g)

Proof :

i) Pleq) = Olegea)
= Plea)Oleq) O is a homomorphism

=> ep0(eq) = 0(eq)0(ea) since eyeq) = O(eg)

=> ex = Olea) by right cancellation in H

The only idempotent element(element that squares to itself) is the group identity
ii) We have e = Pleg) = Olgg") = Olgg) VgeG

So ex
= 0(g)0(g)) = 0(g))o(g) as O is a homomorphism

=> Pg ) = (0(g)
+

iii) 0(go) = O(eq) = ey = 0(g)o by (i)

For any neI

Plgn) = 0)[9) = 0(g)0(q) = 0(g)"
N n - 1

O(gn) = 0((g)(n) = (o(gi))
= (o(g)'" by ii
=a(g)

n

#

Isomorphic Groups

Definition Isomorphic
A group G is isomorphic to a groupH if

I an isomorphism O : G -H .

We write GH



Lemma

If G , H andK are groups then

i) Ig : G- G is an isomorphism
ii) If 0 : G-> H is an isomorphism , then O : H-G is also an isomorphism

iii) If 8 : G-> H
, 4 : H-> k are isomorphisms ,

then

YO : G-> K is an isomorphism

Proof :

i) IG : G-> G is a bijection.

For any
a

, beG , Iq(ab) = Iq(a) Iq(b)
So IG is a homomorphism hence an isomorphism

=> GEG

ii) 0 ,
0 are mutually inverse

. SoO HG is a bijection

Let h
,
kEH

. Since O is onto
,
Ih' , K'EG with

On) = h O(k') = 1

Then OCn'k') = 0(r)0(k) = nk

so 0 (n)0" (k) = hk = 0 (nk) => O is an is morphismj

=> HEG

iii) For
any g ,

he G,
& Y

(40)(gh) = y(0(gh) Gu H - K

= y(o(q)0(n)
= y(0(g))y(0(n)
= (40)(g)(48)(n)

=> composition of homomorphism is a homomorphism

Composition of bijection is a bijection=> 40 is a bijection
=> YO is a isomorphism #



Corollary
The relation = Lisomorphic) is an equivalence relation on the class of all groups

proof :

Let G ,
H

,
k be groups.

Reflexive : By i) of previous lemma
, If :GG is an isomorphism

=> G= G

symmetry : If GEH , I an isomorphism O :G H

Then by (ii) by lemma
,
GHG is also an isomorphism

=> HEG

Transitivity : GEH and HER 10 : G-H and :H K such that

O and I are isomorphism

=> 48 : G+ K is an isomorphism by iii
=> GEK

*

Properties shared by isomorphic groups
Theorem Properties of Isomorphism
Let GEH and let x : G I be an isomorphism

1) order of G = order of Hi G = H

2) G is commutative> H is commutative

3) Let acG
. Then olal = o(d(a))

4) G is cyclic ES H is cyclic
Proof :

1) true sincea is a bijection
2) Suppose G is commutative.

Let a , b EH
. Since < is onto

,
Eal , bet such that

a(a)) = a 2(b') = b



Then ab = <(a)(b) = x(ab)

= c)b'al)

=x(b')x(a)

= ba

=> H is commutative
.

For converse , ifH is commutative
,
then use the fact

: H-> G

is an isomorphism

3) a=eq> ala") = aleq) as a is 1-1

#> alal= ex

4) If G is cyclic , G = (a) = Eat : ze2]

Then H = [x(at) : ze27 since H = <(0)

so H = [x(a7) : zel] = (x(a) : ze27 = (o(a) => H is cyclic
For converse

,
use the fact2 : H-G is also an isomorphism

#

showing groups are isomorphic/ are not isomorphic
To show GEH , we must find an isomorphism between them

Example

1) (IR ,
+) and (IR

,
x) are isomorphic as

O : R- IRT

O(x) = e

is an isomorphism

2) If G = (a) and H =(b) are cyclic groups of order n
, then GEH

Define < : G+ H by x(ai) = gi

we havea =asi =j(modn)
i

S

# b = b)



= x(ai) = x(ai) well defined

clearly a is onto (bi= < (ai)

For any ai ,
a

,
we have aSaia") = x (ai+

= gi+k = bib" = a(ai)x(ak)

Hence x is an isomorphic

To show GEH ,
not isomorphic , we must find a property preserved by isomorphisms that one group

has but the other does not

Example

(1) RESn as RR is infinite , su = n!

(2) SuESm if neM as Sn = n ! + M ! = So

(3) Sy #2, as Iy not commutative but I
,

is

(4) K = 24 as K is not cyclic but Ip is

(5) R** IRT as
*
has an element of order 2 (namely-zeR) but IRI does not

(6) I QT as for all ret
,
IFERT and (F)= u

But qeQ with g= 2

Also could say Q R

Automorphisms and inner automorphism
Definition Automorphism

An automorphism of G is an isomorphism G G
.

we denote by Aut(G) the set of all automorphism

Proposition

Aut(G) forms a group under o composition

proof : We show Aut(G) [Sq

Identity : We know Iqe Ant(G)

closure : If 0 , 4 [Aut(G) ,
then 0

.4 are isomorphism



=> OY : G-G is an isomorphism

=> OYE Aut(G)

Inverse : O : G G is an isomorphism
=> O'E Aut(G)

#

Let G be a group ,
aEG

. Define

YaiGcG
inner automorphism

Pa(g) = agat

Proposition

YatAut(G)

Proof :

homomorphism: Talgh) = agha = ageha = (a gat(aha) = Palg)Pa(h)
one-to-one : Pa(g) = Yalh) => agat= that

=>
g = h by cancellation

onto : For any geG ,
we have

Yalaga) = alaga)at = (a)g(aa)) =

ege = g #

DefinitionSet of all inner automorphisms
The set Inn(G) = &Ya : aeG3 is the set of all inner automorphism of G

Remark : If G is commutative
,
then for any Ya

Pa(g) = aga = gaa" = g = =q(g)
so that Pa = Ig => Inn(G) = [Fa]

Example :

For LESn

Pala , a. ..... am) = 2)a....... am)d
*

= (x(a ,
) cla ..... Hamb

then if B = 0
, 02 .... Up is a cycle decomposition , then



Ya(B) = ya(0, 22 ..... Vx)

= 4,(r , ) ... ..Ya(x)

=>is preserves cycle type
Proposition

Let G be a group. Then

InnG = AutG = SG

proof :

Identity : Ig = Yet Inn(G) ; Pelg) = ege =

g

closure : Let Ya ,YbInn G

Let geG . Then

PaYp(g) = 4a(bgb")
= albgb)a

= abg(ab)" = 4ab(g)
=>NaYb = PabE InnG

Inverse :

↑aYa+
= Paal = Ye = Iq = Paat = NaPat

=> (4a)" = 4a+ (Inn(G)

Properties preserved by homomorphisms

Theorem Properties Preserved by onto homomorphisms
Let G

,
H be groups ,

2 : G - I be an onto homomorphism

1)G]H

2) G is commutative=> H is commutative

3) Let ac G
. If o(a) = n ,

then o((a)) = n

4) G is cyclic => H is cyclic



Proof :

1) True since < is an onto function

2)Suppose G is commutative. Let a
,
bet

.
Since dis onto

,
Ad

,
b'EG such that

a (a) = a
,
<(b) = b

.

Then
ab = x(a(x(b)) = c(ab') = x(b'a) = c(b')x(a)) = ba

G commutative

3) o(a) = n = a = eq

=> clan) = x(eq)

=> Ha)" = en

=> ok(a)) n

4) G is cyclic => EacG s . (

G = (a) = (a7 : ze]]

Then
H = Im() = [c(az) : z (2) onto

= (((a))2 : z =2) = [b7 : z + 2)]

= (b)

where b = <(a) => His cyclic #



7. Quotients Groups and the Fundamental 
Theorem of Homomorphisms

Kernels and Images
Definition Images and Kernels

Let G, H be groups and let O :G H be a homomorphism

Kernel of 0 : Kev(0) = [geG : 0(g) = en

Image of 0 : Im(0) : [0(g) : geGl
ImO is the homomorphic image of G

By defa

KerOcG and ImOEH

Example :

-
1) 0 : G((2

,
1)-> R

*

given by OeG Image-O 8-O(A) = detA
.
Then Kernel
-

i) O is a homomorphism
G H

ii) kevO = SL(2
,
IR)

iii) ImO = R
*
=> O is onto

proof :

i homomorphism : Let A
,
BEGL(2 ,

IR)

O(AB) = det(AB) = det(A)det(B) = 0(a)0(b)

ii) Acker(0) > O(A) = 1

#> det(A) = 1

# AESL(2
,
RI

So AtKerO

iii) Let veRR*. Then E(V0)EGL(2 , IR) and



%(a) = v => O is onto

=> ImO = R
*

Lemma

Let G ,
H be groups ,

O :G-> H a homomorphisms. Then

1) Olal = O(b) #) abeKerO

2) O is 1-1) Ker(d) = Yeah

proof :

1) We know from Lemma pg

0(a) = 0(b) () p(a )o(b) = o(a (0(b)

# Olaa) = O(a b)

# plea = Plea

# ex = 0(a'b)

#abeker O

2) We know eqeKer O

Suppose O is 1-1
. VgEKerO ,

we have

o(g) = ex = 0(eq) = g
= eq(0is1- 1)

=> Ker0 = eG

conversely suppose KerO = Seal

Then O(a) = 0(b) => 0(b) =H

=>albe KerO

=> a b = 2

=> a = b
Therefore O is 1-1

#



Lemma

Let G and I be groups ,
let O:G I be a homomorphism

Then KerO -PG and ImO = H

proof :

We have from Lemma 6 . 3
,
that Oleg) = en

Ker 0 :

Identity : so eqeker as Ker(o) = <geG : 0(g) = eHY and Oleg = en

closure : a
,
beker0 . Then O(a)0(b) =e=

H

Inverse : Pla = (0(a))" = e ,

'

= eH

Conjugacy : Let g ,
heG heKerO

Olghg ) = 0(g)0(h)0(g')
= O(g) e + 0(g) as heker O

= o(g)0(g)
= o(g)0(y) =

en

=> ghg'e ker O
=> KerOG

Im P :

Identity :CHEImO

closure : Let
g ,heImO = [0(k) : KG)

so a, beG with g = 0(a) and n = p(a)

gh = p(a)0(b) = o(ab) = ImO

Inverse : g = (0(a))" = p(at) < Im(0)

#



Construction of Quotient Groups

Let NEG
.

We let

G/n = CaN : a =G]

Define product

(aN)(bN) = abN

multiplication in G
Lemma Well-Defined

aN = cN and bN = dN = abN = cdN well defined

proof : We have c'aeN and d'beN

Now (cd)"(ab) = d'c'ab = A (bbIdab

= (d b) (b + (c (a)b) = (d b)(b"(ca)(b")")
↓ In
EN EN

.. (cd)abeN = abN = cdN
*

Proposition
Let N_PG

. Then G/N is a group under (aN)(bN)
= abN

Identity : Fan = N = eN

Inverse : (aN)" = aN VaEG

proof :

Associativity :Let aN
,
bN

, cNeG/N

Then (aN)(bNcN) = aNbcN = (a(xc)N = ((ab)c)N

= (ab)NcN = (aNbN)c

Identity : VaNeG/N

a N . N = aNeN = deN = aN = eaN = eNaN

= NaN

Inver - aN)



Inverse : (aN)(a N) = aaN = eN = N = aaN = (aN)(aN) => (aN)"= (aN)

Definition Quotient Groups

G/N is the quotient group or factor group of G by N

Example :

det : GL(2
, IR) < IR*

is a homomorphism

Kerdet = SL(2
,
IR) = S. So

SXG = GL(2
,
IR)

Further for any A , BEGL(2 ,
IR)

AS = BS #) BAES cosets

#> detB
"
A = 1

# det B = det A

We have

G/s = SAS : AEG3 and

(AS) (BS) = (AB)S

So it seems G/SEIR
*

Proposition

Let N&G. Then

UN : G > G/N

ry(g) = gN
is an onto homomorphism with Kerry = N

proof :

homomorphism: Vg ,
he G

, we have

Un(gh) = ghN = gNhN = vn(g)ry(h)
Onto : Let gNEG/N .

Then gN = rn(g) => Un is onto

Finally
neKerry) ry(n) =NE)nN =NE) neN .... Kervn = N

.

B



Note G/N = IMUN

We now know

Skernels of homomorphism? = Enormal subgroupsY

[quotient groups] Chomomorphic groupsY

Theorem Fundamental Theorem of Homomorphisms (FTH)

Let G andH be
groups and let OGH be a homomorphism .

Then KerO*G
,

ImO[H and G/KerOEImO
proof : From Lemma 7 .4 , we have KevOG and ImOEH

Let N = KerP
.

We want to show G/NE IMO

Define O : G/N -IMO by
OlaN) = O(a)

1-1 and well-defined : V aN
, bNEG/N

aN = bNE) biaEN

=> Olbia) = ef as N= Ker O

= o(b) "p(a) = e +

# 0(a) = 0(b)

# OlaN) = o(bN)

=> : J is well defined

E: O is 1-1

Onto : heIm O ,
we have

h= 0(a) = 0(aN) so E is onto

homomorphism : =CaNbN) = E(abN)

=O(ab)

= o(a)0(b)

= O(aN)g(bN)
·



Example :

We have det : GL(2
, 1) <R

*
is an outo homomorphism so imdet =R

*

Ker det =SL(2
,
IR)

Let G = Gl(2
, R) ,

S = S((2 ,
12)

Then by FTH ,
G/sER

*

det : G/s + R*; det(As) = det(A)

Applications of FTH : Examples

1) show that for any n22,

AnSn and Sn/AnET
Where T= [1

,
1)

proof : Recall the sign function sg

sg
: Sn T

sg() = [E his event
We drew a table

sgL SgB splap)
1 1 1

1 - 1 - I

- 1 1 - 1

- 1 - 1 -1

clear from table,

sg(ap) = sg(c)sg(p) VaBESn

=> sg is a homomorphism.

Further

Leker(sg)#> 59a = 1

#> Le An



so An = Ker(sg)
Onto : We have

1 = sg(In) and -1 = 5g)(1 , 2)

=> Im(sg) = [1
,
17 = T

By FTH,

Ker(sg) = And In

Sny ImIsg) = Sn #

2) Show that SLIn , 1) = GL(n ,
1R) and

GL(n , 1R) SL(n
,
IR) ERR

*

proof : We find an onto homomorphism : O : GL(n
,
IR) c IR

*

such that

Ker8 = SL(n , IR).

Consider det : GL(n
, IR) < R

*

Al > det A

homomorphism: detAB = detA det B V A
,
BEGL(n ,

IR)

onto :

XveR*, Ev10) -GL(n) such that
det (Y7 ..%= det is onto

=> Im det = R
*

We have

At Kev det > det A = 1

# AtS((n , IR)

so sL(n , R) = Kerdet

By FTH ; Kevdet * GL(n , IR) => SL(n , IR) = GL(n , IR)

GL(n
, 1)/kev det Imdet => GL(n

, IR)/SL(n , IR) = R
*

*



3) Show that nI #I and

2/nz = In
where n = Enz : ze23

proof : Define

C :2 < In

< (z) = [z]

homomorphism : Vz
,
we],

a(z +w) = [z + w] = [z] [w] = x(z)#c(w)

onto : V[z] < In
,
Eze] such that [z] = c(z)

=>L is onto

=> ImC = In

Finally Vze],
Zekerd #> <(z) = [0]

#> [z] = [0]

# z = O(modn)

# n Z

# zen])

So Kerx = n]

By FTH ,

Kera! = n2 !I

Z"KeraImdlInz In *



Direct Product Groups
For any subsets AEG ,

BIG of a group G
,
define

AB = [ab : acA
,
be B)

Definition Internal Direct Product

Let G be a group , HEG ,
K IG.

We say G is the internal direct product of Hand K if
(i) HG

,
K*G ;

(ii) + 1k = Se)

(iii) G = HK = [g =hk : heH
,
KeK]

Proposition

Let G be the internal direct product of subgroups HEG ,
=G.

i) VgeG ,
the expression of gas

g = hk

for heH and KEK is unique

ii) If heH ,
ke1 => hk = Kh

iii) GEHXK

iv) G/HEK

Proof :

i) If XgeG , g = hK = Uk
'

where W
,
heH

,
K

, KEK.

Then (n') n = 1)(k") H1k = [e]= (n') n = x(k) ) = e

CH Ek

=> h= h and K = k

ii) Suppose heH ,
KEK

.

Consider (nk) (kh)
(nk)(hk)" = Ukh'k" = Inkhlk"= n(khk") = Hel = Se]

EkEk HEk

normal normal

=> hk = kh



iii) Define 4 : G >HxK by

P (g) = (n
,
k) where g

=h
,
heH

,
kek

well-defined:Bypart
, e

, k = k

=> (n
, k) = (n'

, ()

one-to-one: 4(nk) = 4(nk) => (n
,
k) = In', 1)

=> h = h
,
k = k

=>hk = 4k

onto: Since G = Hk
,
V(h

,k) Hxk ,
1 g

= hk s . +4(g) = (h
,
k)

Hence i is a bijection.

homomorphism: 4)(hk)(ab)) = 4(hakb)

= (ha
,
kb) h

,
H

,
k

,
bek

= (h ,
k) (a ,

b) external direct product

= 4(hk)y(ab)

Therefore 4 is an isomorphism and

GEHXk

iv) Define 0 : G-> 1

O(nk) = 1 heH
,
KEK

well-defined : By part i)
nk = hk => k = k

onto : KEK
,
ZekeG = Hk) s .

t Olek) = 1

=> Im0 = K

homomorphism : 0)(nk)(ab) = 0(hakb) = kb

= O(hk)o(ab)

Finally hkekerO> plnk) = e E) k = e #) nk = heH

Hence KevP = H and by FTH
, G/HEl #


