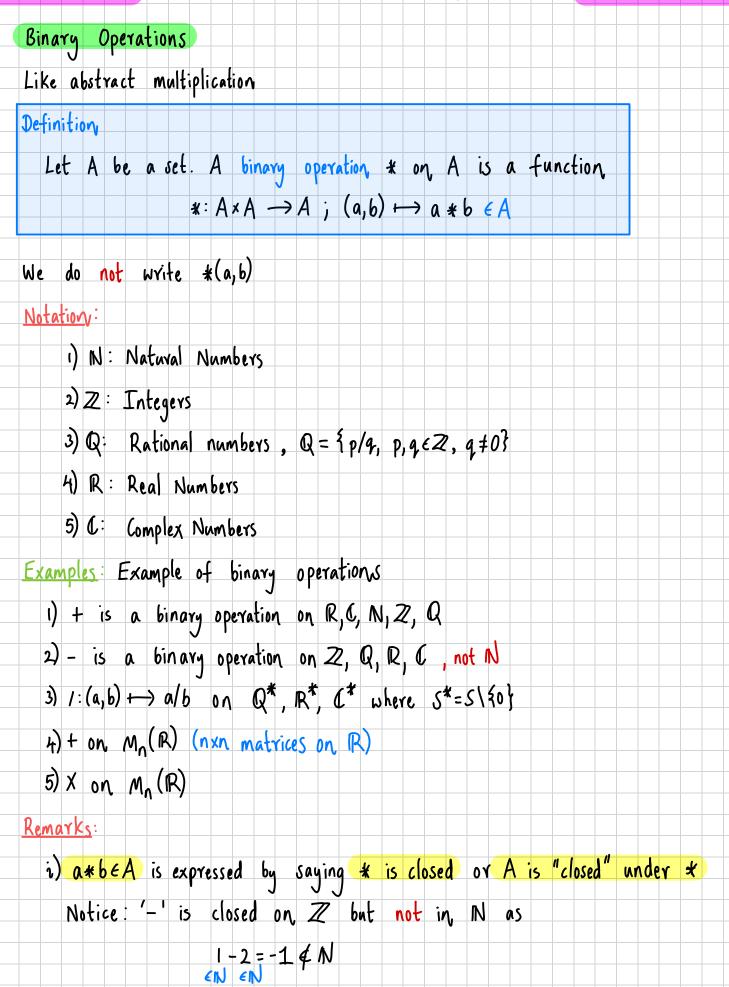


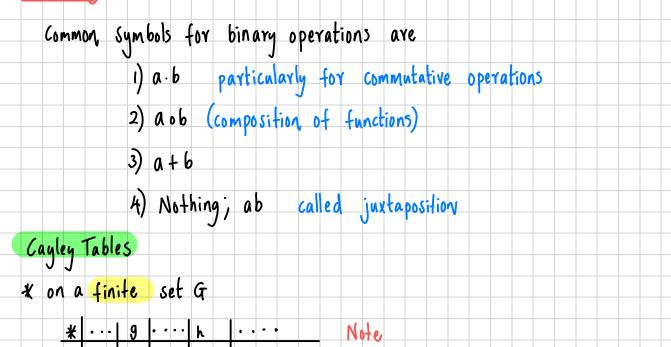


### 1. Introduction to Group Theory



|         | ;;)          | 0    | rdi        | e۲       | m            | ał     | ter           | s,       | in           | g             | ene               | ral           | ,   | 4۵  | <b>*</b> b      | 7              | b*   | a   |      |     |     |     |    |      |    |     |    |    |     |    |   |            |  |
|---------|--------------|------|------------|----------|--------------|--------|---------------|----------|--------------|---------------|-------------------|---------------|-----|-----|-----------------|----------------|------|-----|------|-----|-----|-----|----|------|----|-----|----|----|-----|----|---|------------|--|
|         |              | E    | XAI        | np       | le           | in     | Z             | 7        | 1-           | 2-            | <b>f</b> :        | 2-            |     |     |                 |                |      |     |      |     |     |     |    |      |    |     |    |    |     |    |   |            |  |
|         | iii)         | Th   | e ·        | fa       | cł           | +h     | at            | *        | i            | 5             | V                 | fu            | ηc  | tio | n               | พ่             | ith  | d   | om   | ain | , / | \ r | ne | ans  | ,  |     |    |    |     |    |   |            |  |
|         |              |      |            |          | A            | (a,    | b)            | ε /      | 4 x          | A             | ,                 | 04            | 66  | is  | <b>)</b> (      | de-f           | fine | ed  |      |     |     |     |    |      |    |     |    |    |     |    |   |            |  |
|         |              |      |            | ŀ        | *            | A =    | = {           | (a       | ,6)          | ·, 0          | i, b              | εŀ            | 13  |     |                 |                |      |     |      |     |     |     |    |      |    |     |    |    |     |    |   |            |  |
|         |              | eg   | : /        | /        | ٥Л           | ſR     | W             | her      | re           | (a            | ( <sub>1</sub> 6) | )+;           | o a | /b  | i               | s              | 10   | ł   | Q    | bin | ٥٣  | ) O | pe | vati | on | 0   | IS |    |     |    |   |            |  |
|         |              |      |            |          |              |        |               |          |              | a/            | 0                 | <b>N</b> 0    | ł   | d   | efir            | ned            |      |     |      |     |     |     |    |      |    |     |    |    |     |    |   |            |  |
|         | iv)          | Th   | re         | fa       | ct (         | Ŧh     | at            | *        | <u> </u>     | s (           | a f               | una           | tio | M   | Ŋ               | iłh            | A    | x/- |      | nei | ans | f   | ٥Y | an   | y  | (a, | 6) | ٤, | A x | A, | a | <b>*</b> b |  |
|         |              |      | u/         | ,        | •            |        |               |          |              |               |                   |               |     |     |                 |                |      |     |      |     |     |     |    |      | 5  |     |    |    |     |    |   |            |  |
| Wa      | 1 <b>Y</b> 1 | lina | :          | N        | ot           | alı    | Jau           | p        | cle          | ay            | *                 | (             | is  | W   | Iell            | d              | efi  | ned |      |     |     |     |    |      |    |     |    |    |     |    |   |            |  |
|         |              |      |            |          |              |        | ~             |          |              |               |                   |               |     |     |                 |                |      |     |      |     |     |     |    |      |    |     |    |    |     |    |   |            |  |
| <u></u> | <u>(a</u> 1  | npl  | <u>(</u> : | *        | 0            | V,     | Q             | g        | jV(          | n             | bu                |               |     |     |                 |                |      |     |      |     |     |     |    |      |    |     |    |    |     |    |   |            |  |
|         |              |      |            |          |              |        | <u>a</u><br>6 | * (      | 2            | =             | <u>a</u>          | +(            |     |     |                 |                |      |     |      |     |     |     |    |      |    |     |    |    |     |    |   |            |  |
|         |              |      |            |          |              |        |               |          |              |               |                   |               |     |     |                 |                |      |     |      |     |     |     |    |      |    |     |    |    |     |    |   |            |  |
| <br>    | ¥            | is   | no         | h        | a            | bi     | nai           | ry       | op           | ero           | ntio              | η             | as  | ił  | · is            | <b>^</b>       | lot  | We  | 11 0 | let | ine | d.  |    |      |    |     |    |    |     |    |   |            |  |
|         |              |      |            | <u>ן</u> | *            | 2<br>3 | 2             | <u> </u> | +2           | =             | 3                 |               |     |     |                 |                |      |     |      |     |     |     |    |      |    |     |    |    |     |    |   |            |  |
|         |              | _    |            |          |              |        |               |          |              |               |                   |               |     |     |                 |                |      |     |      |     |     |     |    |      |    |     |    |    |     |    |   |            |  |
| <br>    | Bı           | ٨ł   | -          | 1        | 2            | 2<br>1 | =             | =        | €            | <u>2</u><br>4 | *                 | $\frac{2}{3}$ | =   | 2   | <u>+2</u><br>12 | =              | - 4  | Ę   |      |     |     |     |    |      |    |     |    |    |     |    |   |            |  |
|         |              |      |            |          |              | •      |               |          |              |               |                   |               |     |     |                 |                |      |     |      |     |     |     |    |      |    |     |    |    |     |    |   | _          |  |
|         | 01           | nd   |            | <u>5</u> | <del>†</del> | 4<br>7 | -             | ヲ        | N            | ot            | We                | 11            | de  | +1/ | ned             | \              |      |     |      |     |     |     |    |      |    |     |    |    |     |    |   | _          |  |
|         | ſ.           | • •  |            |          |              |        |               |          |              |               |                   |               |     |     |                 |                |      |     |      |     |     |     |    |      |    |     |    |    |     |    | _ | _          |  |
|         |              |      | ٥Ŋ         |          |              |        |               |          |              |               |                   |               |     |     |                 |                |      |     |      |     |     |     |    |      |    |     |    |    |     |    |   |            |  |
|         | A            | bi   | nar        | J        | op           | eya    | tion          | ١        | *            | is            |                   | Con           | 111 | nta | tiv             | e              | i    | f   |      |     |     |     |    |      |    |     |    |    |     |    |   | _          |  |
|         |              |      |            | A        | a,           | 6E     | A,            |          | ٩            | кb            | C                 | 64            | ٩   |     |                 |                |      |     |      |     |     |     |    |      |    |     |    |    |     |    |   |            |  |
|         |              |      |            |          | •            |        |               |          |              |               |                   |               |     |     |                 |                |      |     |      |     |     |     |    |      |    |     |    |    |     |    | _ | -          |  |
| Ex      | (11          | np   | es         |          |              |        |               |          |              |               |                   |               |     |     |                 |                |      |     |      |     |     |     |    |      |    |     |    |    |     |    |   |            |  |
|         | I)           | +    | on         |          | Z            | is     | . (           | com      | 1 <b>m</b> a | nta           | tiv               | e             | as  |     | 0               | <del>1</del> 6 | =    | 67  | a    | A   | a.  | b E | 7  |      |    |     |    |    |     |    |   |            |  |
|         |              |      |            |          |              |        |               |          |              |               |                   |               |     |     |                 |                |      |     | 42   |     |     |     | ~  |      |    |     |    |    |     |    | _ | _          |  |
| <br>    | 2)           | -    | on         | 6        | Ц            | _[2    | >             | r\0      | 6            | COM           | IM)U              | 17 8          | tiV | e   | as              |                | 1-   | 27  | ⊊ ∠  | - 1 |     |     |    |      |    |     |    |    |     |    |   | _          |  |

### Notation:



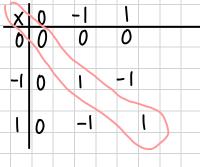
 :
 \* is commutative

 9
 9\*9

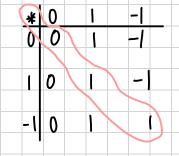
 .
 .

```
h hkg hkh table is symmetric around leading diagonal
```

```
Example: X on 20,1,-13 is commutative, has table
```



But \* on {0,1,-17 with table



#### Groups

Definition 1.5 Group A group (G, \*) is a set G together with binary operation \* such that (a) Associativity ∀ a, b, c ∈ G, a \* (b \* c) = (a \* b) \* c(b) Existence of identity I eeg such that for all aeg e \* a = a = a \* e(c) Inverse  $\forall a \in G, \exists b \in G$  such that a \* b = e = b \* a<u>Remark</u>: i) (a) is called associative property ii) we often drop '\*' when it is clear saying 'G' rather than (G,\*) and writing ab for a\*b iii) being closed is built into definition of binary operation Definition, Order Let G be a group. Order of a group is the cardinality of the set G G = order A group is finite/infinite 👄 order is finite/infinite

Lemma Uniqueness of identity and inverse  
Let G be a group. Then  
i) The element e such that  

$$e \star a = a = a \pm e$$
 VaeG  
is unique  
 $e \star a = a = a \pm e$  VaeG  
is unique  
 $a \star b = e = b \pm a$   
 $a \star b = e = b \pm a$   
is anique  
Proof:  
i) Suppose  $e, f \in G$  and for all  $a \in G$   
(1)  $e \star a = a = a \pm e$  and  $f \star a = a = a \pm f$  (2)  
Then  
(1)  $e \star f = f$  and  $e \star f = e$  (2)  
 $\Rightarrow e = f$   
ii) Let  $a \in G$  and suppose  $b, c \in G$  with  
 $b \pm a = e = a \pm b$  and  $C \star a = e = a \pm c$   
Then  
 $b = b \pm e = b \pm (a \pm c) = (b \pm a) \pm c = e \pm c = c$   
(associativity)  
We say c is the identity of G, we can also write  $e_G$ , 1,  $1_G$   
We enphasize  $a^{-1}$  is the unique element of G such that  
 $a^{-1} \star a = e = a \pm a^{-1}$ 

#### Lemma

Let G be a group. Then, 
$$\forall a, b, c \in G$$
,  
1)  $(a^{-1})^{-1} = a$   
2)  $(ab)^{-1} = b^{-1}a^{-1}$   
3)  $ab = ac \implies b = c$  left cancellation  
4)  $ba = ca \implies b = c$  right cancellation

### Proof:

and uniqueness of inverse

# 2) We have

$$(b^{-1}a^{-1})(ab) = b^{-1}(a^{-1}a)b$$
  
=  $b^{-1}eb = b^{-1}b$ 

$$(ab)(\overline{b}^{\dagger}\overline{a}^{\dagger}) = a(b\overline{b}^{\dagger})\overline{a}^{\dagger} = ae\overline{a}^{\dagger}$$

$$\Rightarrow$$
 (ab)' = b<sup>1</sup>a<sup>-1</sup> by uniqueness of inverses

3) 
$$ab = ac \implies a^{-1}(ab) = \overline{a}^{-1}(ac)$$
  
 $\implies (a^{-1}a)b = (a^{-1}a)c$  associativity  
 $\implies eb = ec$  inverse  
 $\implies b = c$  identity

4) 
$$ba = ca \implies (ba)a' = (ca)a'$$
  
 $\implies be = ce \qquad associativit$   
 $\implies be = ce \qquad inverse$   
 $\implies b = ce \qquad inverse$   
 $\implies b = ce \qquad identity$ 

(3) and (4) called left and right cancellation laws

Corollary

Let G be a group. Then, 
$$\forall a_1, \dots, a_n \in G$$
  
 $(a_1 \cdots a_n)^{-1} = a_n^{-1} \cdots a_n^{-1}$ 

Proof Previous Lenna and induction

For n=2,

$$(a_1 a_2)^{-1} = a_2^{-1} a_1^{-1}$$

by previous lemma

<u>Inductive hypothesis</u>: Assume true for n=k (0

$$(a_1, \dots, a_k) = a_k \dots a_k$$

Inductive step: If property true for  $n=K \implies$  true for n=k+1

$$(a_1 \cdots a_k a_{k+1})^{-1} = ((a_1 \cdots a_k) a_{k+1})^{-1} \qquad associative$$

$$= a_{k+1}^{-1} (a_1 \cdots a_k)^{-1} \qquad base \ case$$

$$= a_{k+1}^{-1} a_k^{-1} \cdots a_1^{-1} \qquad inductive \ hypothesis$$

Corollary Latin Square Property

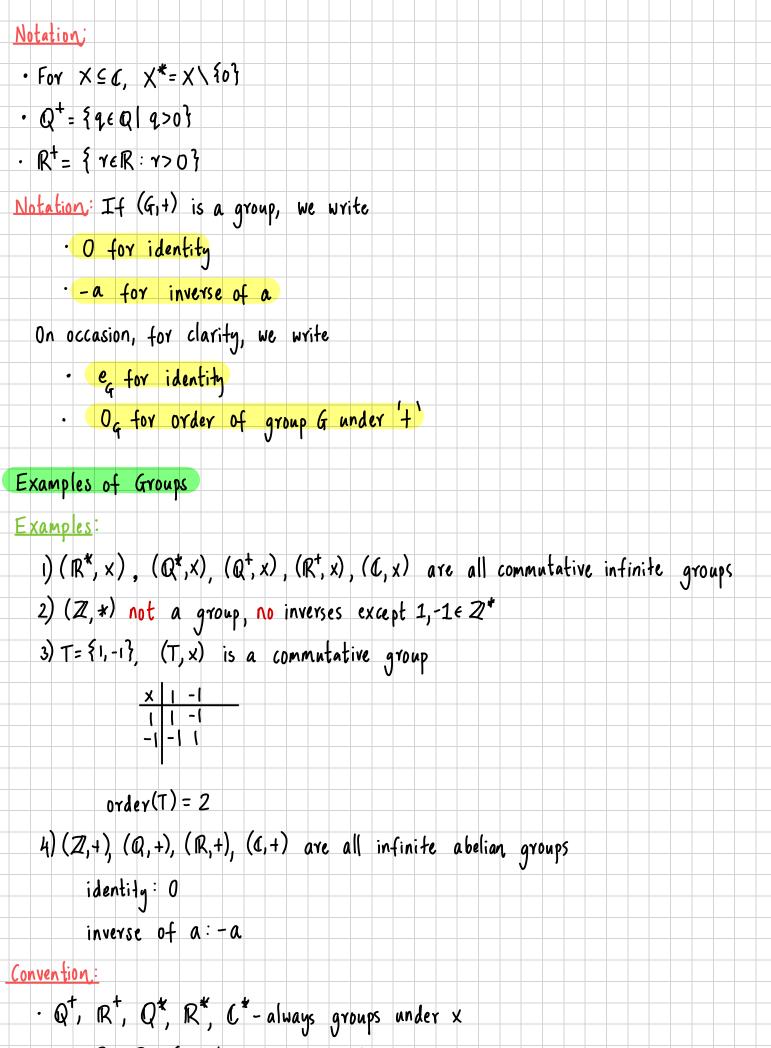
Let G be a group of finite order

Then every element of G occurs exactly once in every row and in every column of the table of G

**<u>Proof</u>**: Consider row Ra labelled by aEG

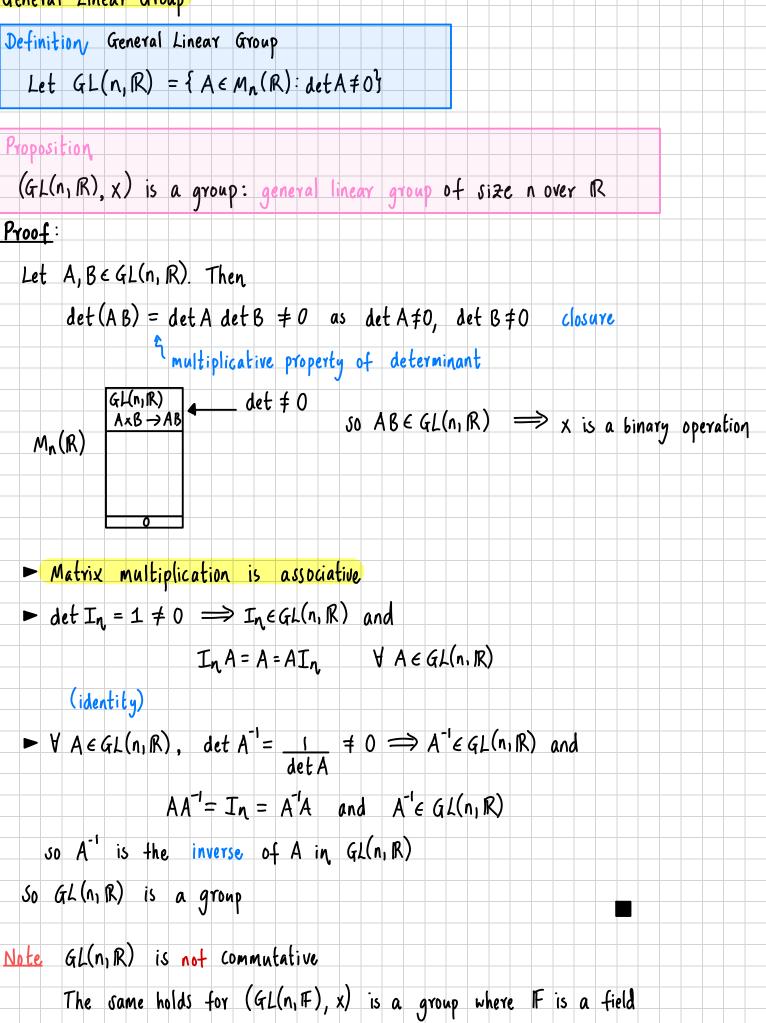
| Le | ł           | ge    | G          | =          | ⇒        | > (              | -1<br>2 0 | g E | G   |                   | c      | 050                      | n 1 e | 2    |      |     |     |            |     |            |               |                   |                 |      |     |     |     |    |     |     |          |     |    | _ |
|----|-------------|-------|------------|------------|----------|------------------|-----------|-----|-----|-------------------|--------|--------------------------|-------|------|------|-----|-----|------------|-----|------------|---------------|-------------------|-----------------|------|-----|-----|-----|----|-----|-----|----------|-----|----|---|
|    |             | V     |            |            |          |                  | · ·       | 1   |     |                   |        |                          |       |      |      |     |     |            |     |            |               |                   |                 |      |     |     |     |    |     |     | -        |     |    | + |
|    |             |       |            |            | e        | e                |           |     |     | a <sup>-1</sup> 0 | /<br>7 |                          |       |      |      |     |     | a(         | á   | a)         | =             | (a                | a <sup>-1</sup> | ) a  | = ( | eq  | = ( | 7  |     |     |          |     |    | - |
|    |             |       |            |            |          |                  |           |     |     |                   | /      |                          |       |      |      |     |     |            | 1   | <i>)'</i>  |               |                   |                 | J    |     | V   | `   | /  |     |     |          |     |    |   |
|    |             |       |            |            |          |                  |           |     |     | :,                | -1     | 、                        |       |      |      |     |     |            |     |            |               |                   |                 |      |     |     |     |    |     |     |          |     |    |   |
|    |             | Ra    |            | •          | a        | <b>a</b>         | ••        | ••• | ••• | ali               | a 'g   | )                        |       |      |      |     |     |            |     |            |               |                   |                 |      |     |     |     |    |     |     |          |     |    | _ |
|    |             |       |            |            |          |                  |           |     |     |                   |        |                          |       |      |      |     |     |            |     |            |               |                   |                 |      |     |     |     |    |     |     |          |     |    | - |
|    | ł           | -ha   | ł          | q          | 00       | cu               | rs        | in. | Y   | ω                 | Ra     |                          | an    | d    | 60   | lum | 1   | of         | ā   | (<br>9     |               |                   |                 |      |     |     |     |    |     |     |          |     |    |   |
|    |             |       |            | v          |          |                  |           |     |     |                   |        |                          |       |      |      |     |     |            |     | Y          |               |                   |                 |      |     |     |     |    |     |     |          |     |    |   |
| f  |             | g     | al         | Sd         | 00       | cut              | 5         | i٨  |     | 141               | nĄ     | lo                       | abe   | llec |      | by  | h   | ,          | th  | en         |               |                   |                 |      |     |     |     |    |     |     |          |     |    | _ |
| +  |             | V     |            |            |          |                  |           |     |     |                   |        |                          |       |      |      | •   | h   |            |     |            |               |                   |                 |      |     |     |     |    |     |     | <u> </u> |     |    | - |
|    |             |       |            |            |          |                  | 0.        | e.  |     |                   |        | r u<br>z <sup>-1</sup> a |       |      |      |     | •   |            |     | _          |               |                   |                 |      |     |     |     |    |     |     |          |     |    | - |
|    |             |       |            |            |          |                  |           |     |     |                   |        | · V                      |       |      |      |     | •   |            |     |            |               |                   |                 |      |     |     |     |    |     |     |          |     |    |   |
|    |             |       |            |            |          |                  |           |     |     |                   |        | ;                        |       |      |      |     | :   |            |     |            |               |                   |                 |      |     |     |     |    |     |     |          |     |    |   |
| _  |             |       |            |            |          |                  | a         | a   |     | • • •             | •••    | g.                       |       |      |      |     | g   |            |     |            |               |                   |                 |      |     |     |     |    |     |     |          |     |    | _ |
| +  |             |       |            |            |          |                  |           |     |     |                   |        |                          |       |      |      |     |     |            |     |            |               |                   |                 |      |     |     |     |    |     |     |          |     |    | - |
|    |             |       |            |            |          |                  |           |     |     |                   |        |                          |       |      |      |     |     |            |     |            |               |                   |                 |      |     |     |     |    |     |     |          |     |    | - |
|    |             |       |            | <u>g</u> = | = al     | (a <sup>-1</sup> | g)        | = 0 | rh  | S                 | D      | by                       | C     | an   | ell  | ati | on, |            | a'' | q =        | h             |                   |                 |      |     |     |     |    |     |     |          |     |    |   |
|    |             |       |            |            |          |                  |           |     |     |                   |        | v                        |       |      |      |     |     |            |     | ۲          |               |                   |                 |      |     |     |     |    |     |     |          |     |    |   |
| 0  | g           | 00    | cui        | 5          | ex       | act              | ly        | 01  | \ce | _iI               | n I    | Ka.                      |       | Si   | nill | a Y | +1  | ) <b>1</b> | C   | lui        | nns           |                   |                 |      |     |     |     |    |     |     |          |     |    | - |
| +  |             |       |            |            |          |                  |           |     |     |                   |        |                          |       |      |      |     |     |            |     |            |               |                   |                 |      |     |     |     |    |     |     |          |     |    | - |
| X  | ar          | n pla | <u>e</u> . |            |          |                  |           |     |     |                   |        |                          |       |      |      |     |     |            |     |            |               |                   |                 |      |     |     |     |    |     |     |          |     |    |   |
|    |             |       |            |            |          |                  |           |     |     |                   |        |                          |       |      |      |     |     |            |     |            |               |                   |                 |      |     |     |     |    |     |     |          |     |    |   |
| -  |             |       |            | 0          | <u>e</u> |                  | <u>a</u>  |     | 6   |                   | 6      |                          |       |      | -    |     | • . | L          | 1   |            | 1             | . (               |                 |      | -   |     | r   |    |     |     |          | 11  |    |   |
| +  |             |       |            | e          | e        |                  | a         |     | b   |                   | 6      |                          |       |      |      |     | IS  | T          | ne  | p <i>i</i> | art<br>I a La | 1 <b>a</b>  <br>; |                 | rab  |     | 0.  | t   | a  | g   | hou | P        | the | Λ. | W |
|    |             |       |            | a          | a        |                  | e         |     | 6   |                   | b      |                          |       |      |      |     | 6   |            | 60  | my         | ere           |                   |                 |      |     | -   |     |    |     |     |          |     |    | - |
|    |             |       |            |            |          |                  |           |     |     |                   |        |                          |       |      |      |     |     |            |     |            |               | Ŀ                 | ۶L              | ati  | in  | Sq  | na  | re | ργ  | σρ  | ert      | y   |    |   |
|    |             |       |            | b          | 6        |                  | 6         |     | e   |                   | a      |                          |       |      |      |     |     |            |     |            |               |                   |                 |      |     |     |     |    |     |     |          | J   |    |   |
| -  |             |       |            | 1          |          |                  |           |     | •   |                   | 0      |                          |       |      |      |     | In  | -          | any |            | ghi           | oup               | h               | iił) | ۱.  | der | nti | łŋ | f   | ,   |          |     |    | - |
| +  |             |       |            | 6          | 6        |                  | 6         |     | a   |                   | e      |                          |       |      |      |     |     |            | v   |            | Y             | ţ.                |                 |      |     |     |     | •  |     |     |          |     |    | - |
|    |             |       |            |            |          |                  |           |     |     |                   |        |                          |       |      |      |     |     |            |     |            |               | Τ'                | -               | Т    |     |     |     |    |     |     |          |     |    | - |
|    |             |       |            |            |          |                  |           |     |     |                   |        |                          |       |      |      |     | _   | €          | id  | ent        | ity           | m                 | us.             | - 1  | e   | i٨  | le  | ad | ing |     | dia      | 701 | al |   |
|    |             |       |            |            |          |                  |           |     |     |                   |        |                          |       |      |      |     |     |            |     |            | J             |                   |                 |      |     |     |     |    | J   |     |          |     |    | _ |
|    | (.          | ]     | •          |            |          |                  |           |     |     |                   |        |                          |       |      |      |     |     |            |     |            |               |                   |                 |      |     |     |     |    |     |     |          |     |    | _ |
| Je | <b>†</b> 11 | nit   | 107        |            |          |                  |           |     |     |                   |        |                          |       |      |      |     |     |            |     |            |               |                   |                 |      |     |     |     |    |     |     |          |     |    | - |
| -  |             |       | rou        |            | 10       | r, *             | ١         | ic  | (   | 0 10              | M      | to                       | tiv   | 0,   | 01   | _   | he  | ia         | h   |            |               |                   |                 |      |     |     |     |    |     |     |          |     |    | + |
|    | A           | 111   | ( MII      | D          | 1 1 4    | 1 1 2            |           |     |     |                   |        |                          |       |      |      |     |     |            |     |            |               |                   |                 |      |     |     |     |    |     |     |          |     |    |   |

axb=6xa Va,6eG



·Z, Q, R, C-always groups under t

General Linear Group



Corollary

As GL(n, R) is a group, inverse of a matrix is unique

Also if ABEGL(n, R),

$$(A_{1}B)^{-1} = B^{-1}A^{-1}$$

Similarly for any field f, we denote the set of nxn matrices over IF by  $M_n(IF)$ Put  $GL(n, IF) = \{A \in M_n(IF): det A \neq 0\}$ 

(GL(n, IF), x) is a group with identity In and inverse of A being the same as matrix inverse

(GL(n, JF)) is a general linear group

Klein-4 group

<u>**Proof</u>**: Checking associativity</u>

Consider expressions (xy)z = x(yz). We need to show that for any values of x, y, z from K, we have

$$(xy) \neq = x(y \neq)$$

1) If atleast one of x, y, z is e, result is true

2) If  $x, y, z \in \{a, b, c\}$  and are distinct, then (xy)z = zz = e and x(yz) = xx = e

3) If  $x, y, z \in \{a, b, C\}$  and  $x = y \neq Z$ , then (xy)Z = eZ = Z

x(yz) = xt = z where  $t = yz \neq x$ 

4) If 
$$x, y, z \in \{a, b, c\}$$
 and  $x = y = z$ , then  $(xy)z = ez = z$  and  $x(yz) = xe = x = z$ 

The other cases follow similarly using commutativity

| Definition Self inverse                                                                                                |
|------------------------------------------------------------------------------------------------------------------------|
| If $x^{-1}=x$ for $x \in G$ , then, $x$ is self inverse                                                                |
|                                                                                                                        |
| Note: e== e as ee=e => e always self inverse                                                                           |
|                                                                                                                        |
| In K, every element is self inverse, K is commutative                                                                  |
| The groups $(\mathbb{Z}_n, \oplus)$ and $(\mathbb{Z}_p^*, \otimes)$ , p prime                                          |
| Congruence of Integers                                                                                                 |
|                                                                                                                        |
| This is a relation Z                                                                                                   |
| Definition Congruence modulo n                                                                                         |
| Let nEN and define relation (=) such that                                                                              |
|                                                                                                                        |
| $a \equiv b \pmod{n} \iff a - b = kn$ for some $k \in \mathbb{Z}$                                                      |
| The following are equivalent                                                                                           |
|                                                                                                                        |
| 1) $a \equiv b \pmod{n}$                                                                                               |
| 2) n (a-b)                                                                                                             |
| 3) a = b + Kn                                                                                                          |
|                                                                                                                        |
| 4) a and b leave the same remainder when divided by n                                                                  |
| $5) a \mod n = b \mod n$                                                                                               |
|                                                                                                                        |
| Theorem                                                                                                                |
|                                                                                                                        |
| For any $n \in \mathbb{N}$ , we have $\equiv (mod n)$ congruence modulo $n$ is an equivalence relation on $\mathbb{Z}$ |
|                                                                                                                        |
| Proof:                                                                                                                 |
| Reflexivity: $\forall a \in \mathbb{Z}$ , $a - a = 0$ and $n \mid 0 \implies n \mid a - a$                             |
| $\implies a \equiv a \pmod{n}$                                                                                         |
|                                                                                                                        |
| <u>Symmetry</u> : for any $a, b \in \mathbb{Z}$ , $a \equiv b \pmod{n} \implies a - b = Kn$                            |
| $\implies b-a = (-k)n$                                                                                                 |
|                                                                                                                        |
| $\implies b \equiv a \pmod{n}$                                                                                         |
|                                                                                                                        |

Transituity: for any a,b, C 
$$\in \mathbb{Z}$$
  
 $a \equiv b(mod n)$  and  $b \equiv c(mod n) \implies a-b = kn$  and  $b-c = ln$  for some k,  $l \in \mathbb{Z}$   
 $\Rightarrow a-c = (k+l)n$ ,  
 $\Rightarrow a \equiv c(mod n)$   
For  $a \in \mathbb{Z}$ , we write  
 $[a] = \{x \in \mathbb{Z} \mid x \equiv a(mod n)\}$   
i.e. equivalence class of A  
By the division algorithm, for any  $n \in \mathbb{N}$ ,  $b, a \in \mathbb{Z}$ ,  
 $b = kn + a$ ,  $0 \le a \le n$   
Therefore there are  $n$ -distinct equivalence classes  
 $[o], [1], \dots, [n-1]$   
Theorem.  
If 'n' is an equivalence relation on set A, then,  $\forall a, b \in A$   
 $a \lor b \iff [a] = [b]$   
Proof:  
 $(\Longrightarrow)$ : Suppose  $a \lor b$  and  $x \in [a]$   
 $x \in [a] \implies x \lor a$  and  $a \lor b$   
 $\implies x \land b$   
Transituity  
 $\Rightarrow x \in [b]$   
 $\Rightarrow [a] \in [b]$   
Similarly  $[b] \le [a]$ . Therefore by mutual containment  
 $[a] = [b]$   
 $(\Longleftrightarrow)$ : suppose  $[a] = [b]$   
 $(\Longleftrightarrow)$  suppose  $[a] = [b]$   
 $(\Longleftrightarrow)$  suppose  $[a] = [b]$   
 $(\Leftarrow)$  suppose  $[a] = [b]$   
 $(mod x \in [b] \implies x \lor x \ and x \lor b \implies a \lor b}$ 



If 'n' is an equivalence relation on set A, then

$$\Pi = \{ [a] : a \in A \}$$
 partitions A

Proof:

Since '~' is an equivalence relation; it is reflexive

So 
$$\forall a \in A, a \land a \Longrightarrow a \in [a], hence [a] \neq \emptyset$$

Take any  $x \in [x]$  (since  $\sim$  reflexive) so x belongs to atleast one equivalence class Suppose  $x \in [a]$  and  $x \in [b]$  ([a]  $\cap [b] \neq \phi$ )  $\implies x \sim a$  and  $x \sim b$ 

⇒ anx and xnb

 $\implies ( | [a] = A$ 

⇒ a~b

Therefore x belongs to a unique equivalence class since if [a] and [b] are distinct equivalence classes,  $[a] \neq [b] \implies [a] \cap [b] \neq \emptyset$ 

🔿 mutually disjoint

Ξ

Further  $[a] \leq A$  for any  $a \in A \implies ()[a] \leq A$ 

By reflexivity, if  $a \in A$ , then  $a \in [a] \implies A \subseteq \bigcup [a]$  a  $\in A$ ( $a \sim a$ ) a  $\in A$ 

Definition Integers modulo n

Set Zn is integers modulo n defined by
$$Z_n = \{ [0], [1], \cdots, [n-1] \}$$

By the above theorem,  $Z_n$  partition Z

$$\mathbb{Z} = [0] \cup [1] \cup \cdots \cup [n-1]$$

Operations on Zn

Define operations  $\oplus$  and  $\otimes$  as follows  $\cdot \oplus : [a] \oplus [b] = [a+b]$   $\cdot \otimes : [a] \otimes [b] = [axb]$   $a, b \in \mathbb{Z}$ Lemma

€ is a well defined associative, commutative binary operation on Zn · [0] is the identity for O Proof Showing & is well defined We want to show that  $[a] \oplus [b]$  is uniquely valued. Suppose [a] = [a'] and [b] = [b'] $\Rightarrow$  a=a'(modn) and b=b'(modn)  $\Rightarrow$  nl(a-a') and nl(b-b')  $\Rightarrow$  nl((a-a')+(b-b')) (distributivity)  $\implies n!(a+b)-(a'+b') \implies a+b \equiv a'+b' (mod n)$  $\implies$  [a+b] = [a'+b'] $\Rightarrow$  ([a] $\oplus$ [b])= [a']  $\oplus$  [b] <u>Showing  $\oplus$  is associative:  $\forall$  [a], [b], [c]  $\in \mathbb{Z}_n$ </u>  $([a] \oplus [b]) \oplus [c] = [a+b] \oplus [c]$ = [(a+b)+c]= [a+(b+c)] = [a] 🕀 [6+c]  $= [a] \oplus ([b] \oplus [c])$ Showing  $\oplus$  is commutative:  $\forall [a], [b] \in \mathbb{Z}_n$ ,  $[a] \oplus [b] = [a+b] = [b+a] = [b] \oplus [a]$ Showing [0] is the identity:  $\forall [a] \in \mathbb{Z}_n$ ,  $[a] \oplus [0] = [a+0] = [a] = [0+a] = [0] \oplus [a]$ 



& is a well defined associative, commutative binary operation on Zr. · [1] is the identity for Ø Proof Showing & is well defined We want to show that  $[a] \otimes [b]$  is uniquely valued. Suppose [a] = [a'] and [b] = [b'] $\Rightarrow$  a=a'(modn) and b=b'(modn)  $\implies$  a-a' = Kn, and b-b' = nl for some K, l  $\in \mathbb{Z}$  $\Rightarrow$  a = Kn + a' and b = nl + b'  $\implies$   $ab = (Kn+a)(nl+b') \implies ab = a'b' + (a'l + b'K + Kln)n$  $\implies$  ab  $\equiv$  a'b(mod n)  $\Rightarrow$  [ab] = [a'b']  $\implies$   $[a] \otimes [b] = [a'] \otimes [b']$ <u>Showing  $\otimes$  is associative</u>:  $\forall$  [a], [b], [c]  $\in \mathbb{Z}_n$  $([a] \otimes [b]) \otimes [c] = [a \cdot b] \otimes [c]$  $= [(a \cdot b) \cdot c]$  $= [a \cdot (b \cdot c)]$  $= [a] \otimes [b \cdot c]$  $= [a] \otimes ([b] \otimes [c])$ showing & is commutative: Y[a], [b] & Zn,  $[a] \otimes [b] = [a \cdot b] = [b \cdot a] = [b] \otimes [a]$ Showing [1] is the identity:  $\forall [a] \in \mathbb{Z}_n$ ,  $[a] \otimes [1] = [a \cdot 1] = [a] = [1 \cdot a] = [1] \otimes [a]$  Theorem.

 $(\mathbb{Z}_n, \oplus)$  is a commutative group of order n

<u>Proof</u>: From previous lemma, *e* is a binary operation, commutative, associative with identity [0]

$$\forall [a] \in \mathbb{Z}_n, \ [a] \oplus [o] = [a+o] = [a] = [o+a] = [o] \oplus [a]$$

We just need to show the existence of inverses

$$\forall [a] \in \mathbb{Z}_n, \exists [-a] \in \mathbb{Z}_n \text{ and } [a] \oplus [-a] = [a-a] = [0]$$

 $= [-a] \oplus [a]$ 

Hence  $(\mathbb{Z}_n, \mathbf{\Phi})$  is a commutative group, with identity [0] and inverse [-a]

<u>Convention</u>

i) 
$$\mathbb{Z}_n$$
 always means  $\mathbb{Z}_n$  under  $\Theta$   
ii) We may drop 0 from  $\Theta$  and [] from [a] where the context is clear.  
eq: in  $\mathbb{Z}_4$   
 $7=3$ ,  $-15=1$ ,  $7+(-15)=-8=0=3+1=4$ 

Table for  $(\mathbb{Z}_2, \oplus)$ 

+ 0 1 This is the "same as" (T,x) where T = 31, -1?

Note We write [a] [b] for [a] @ [b]

Dropping the [], we have

| 9 |   |               |    |    |   |  |   | ,               |    |   |                  |   |  |
|---|---|---------------|----|----|---|--|---|-----------------|----|---|------------------|---|--|
|   |   | $(\mathbb{Z}$ | 3, | 0) | ) |  |   | $(\overline{z}$ | Z4 | 0 | )                |   |  |
|   |   | 0             |    | 2  |   |  |   |                 | 0  | J | 2                | 3 |  |
|   | 0 | 0             | 0  | 0  |   |  | _ | 0               | 0  | 0 | 0<br>2<br>0<br>2 | 0 |  |
|   | 1 | 0             | ſ  | 2  |   |  |   | l               | 0  | 1 | 2                | 3 |  |
|   | 2 | 0             | 2  | 1  |   |  |   | 2               | 0  | 2 | 0                | 2 |  |
|   |   |               |    |    |   |  |   | 3               | 0  | 3 | 2                |   |  |
|   |   |               |    |    |   |  |   |                 |    |   |                  |   |  |

Neither of these the table of a group as [0] is not invertible, and it disobeys latin square property (0 appears more than once)

| Notation,:       | Ta 7                |                  | Limes L       | (0 L)Y           | Lo       |            |                    |              |             |        |                  |   |
|------------------|---------------------|------------------|---------------|------------------|----------|------------|--------------------|--------------|-------------|--------|------------------|---|
|                  |                     |                  | ] = ā         |                  |          | <b>{</b> 0 | ··· , <u>7</u>     | - <u>-</u> \ |             |        |                  |   |
| Definition       |                     |                  | 5             |                  | ~1       | ,          | ,                  | . ,          |             |        |                  |   |
| For n            |                     |                  |               |                  |          |            |                    |              |             |        |                  |   |
|                  |                     | * = {[1          | 7 [2].        | ••••             | [n-1]    | }= 7       | 1 10               | )}           |             |        |                  |   |
|                  |                     |                  |               |                  |          | / ~        | Λ · ···            |              |             |        |                  |   |
| <u>Note</u> : [x | .] ∈ ℤ <sup>*</sup> | ⇔[               | x]            | ] (3)            | n Xx     |            |                    |              |             |        |                  |   |
| Theorem          |                     |                  |               |                  |          |            |                    |              |             |        |                  |   |
| Let p            | be prin             | ne. Then         | , (Zp*        | ,ø)              | is a     | comm       | ntati              | ve gr        | sup, or     | der p- |                  |   |
| Proof Le         | .mma ab             |                  |               |                  |          |            |                    |              |             |        |                  | _ |
|                  |                     |                  | is asso       |                  |          |            |                    | entity       | [1],        | [1] €  | ℤ <sub>P</sub> * |   |
|                  | : Need              |                  |               |                  |          |            |                    |              |             |        |                  |   |
| Let              | [a], [b] (          | €Zp <sup>★</sup> | ⇒ 1           | Xa               | and      | р У Ь      |                    | Note         | P           | prime  |                  |   |
|                  | contrap             | ositive          | $\Rightarrow$ | pXab             |          |            |                    | p            | ab =        | ⇒ pla  | orpb             |   |
|                  |                     |                  | ⇒ 0           | ıb≢(             | o(mod    | p)         |                    |              |             |        |                  |   |
|                  |                     |                  | ⇒ [ı          | vp] <del>1</del> | [0]      |            |                    |              |             |        |                  |   |
|                  |                     |                  | ⇒ [ı          | a]@[             | b] = [   | [ab]e      | Zp*                |              |             |        |                  |   |
| Henc             |                     | s a bin          | ary ope       | ration           | on 2     | Zp*        |                    |              |             |        |                  |   |
| Inverse          | <u>'s</u> : Need    | to sho           | w exist       | ence d           | of inve  | rses. [o   | .][a <sup>-1</sup> | ] = [:       | L]          |        |                  |   |
| Since            | , pXa,              | we hav           | re gcd        | (a, p) =         | 1 *      | (pła       | . and              | prime        | ; <b></b> ; | (a, p) | = )              |   |
| So               | Ξsite               | Z s.t            | 1= sa         | f Ep.            | Hence    |            |                    |              |             |        |                  |   |
|                  | [1                  | ]=[sa ·          | ŀŧp] ≒        | > sa·            | ftp≡     | 1(mod      | p)                 |              |             |        |                  |   |
|                  |                     |                  |               | ) sat            | 6p - 1 = | - pk       | for                | some         | KeZ         |        |                  |   |
|                  |                     |                  | =             | > sa             | -1 = p(  | K-f)       |                    |              |             |        |                  |   |
|                  |                     |                  |               | sa:              | =1(m     | iod p)     |                    |              |             |        |                  |   |
|                  |                     |                  | ⇒             | [sa]             | = 1      | €          | [a][s              | ]=1          |             |        |                  |   |
|                  |                     |                  |               |                  |          |            |                    |              |             |        |                  |   |

So we have

### [1] = [sa + tp] = [sa] = [s][a] (and also $[s] \in \mathbb{Z}_p^*$ ) Hence inverse exists

\* Note: p prime

Only integers that divide p is 1 and p

Table for  $(\mathbb{Z}_{+}^{*}, \varnothing)$ 

 $\begin{vmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 2 & 4 & 6 & 1 & 3 & 5 \\ 3 & 3 & 6 & 2 & 5 & 1 & 4 \\ 4 & 4 & 1 & 5 & 2 & 6 & 3 \\ 5 & 5 & 3 & 1 & 6 & 4 & 2 \\ 6 & 6 & 5 & 4 & 3 & 2 & 1 \\ \end{vmatrix}$ 

Note:  $(\mathbb{Z}_{n}^{*}, \otimes)$  is NOT a group if n composite  $\mathbb{Z}_{n}^{*} = \{ [1], \dots, [n-1] \}$ For n composite,  $\mathbb{E}[a] \in \mathbb{Z}_{n}^{*}$  such that a n

 $a | n \implies n=al$  for some  $l \in \mathbb{Z}$ 

 $\implies [n] = [a][l]$  $\implies [0] = [a][l]$ 

Further  $0 < l < n \implies [l] \in \mathbb{Z}_n^*$ 

Hence not closed under  $\varnothing \Longrightarrow$  Not a group

# 2. Orders of Elements, Subgroups and Cyclic Subgroups

| <b>2. Or</b>   | ders of        | Eleme                       | nts,     | Subgre     | oups al | nd Cyclic | : Subgi | roups |
|----------------|----------------|-----------------------------|----------|------------|---------|-----------|---------|-------|
|                | Associative    |                             |          |            |         |           |         |       |
| general        | TIJUCIATIVE    | , LAW                       |          |            |         |           |         |       |
| The gen        | ieral associat | tive law: le                | eave on  | t brackets |         |           |         |       |
| For grou       | up (G,*), t    | y associat                  | ive law  |            |         |           |         |       |
|                |                | Y                           |          | (*b) *C    |         |           |         |       |
| But for        | 4 elements;    |                             |          |            |         |           |         |       |
|                |                | ۵·                          | *6*c*    | :d         |         |           |         |       |
| many i         | ways to brac   | ket. For e                  | xample   |            |         |           |         |       |
| <b>/</b>       |                | (*b) * (C                   |          |            |         |           |         |       |
|                |                | r*(b*(c*                    |          |            |         |           |         |       |
|                |                | 17 07 07                    | w//      |            |         |           |         |       |
| etc.           |                |                             |          |            |         |           |         |       |
| Lemma          | General As     | sociative Lu                | rw       |            |         |           |         |       |
|                |                |                             |          |            |         |           |         |       |
| For a          | ing group G    | and any                     | a,, a    | neG, the   | product |           |         |       |
|                |                | $a_1 \star a_2 \star \cdot$ | · * an   |            |         |           |         |       |
|                |                |                             | ~~       |            |         |           |         |       |
| is ur          | nambignous     |                             |          |            |         |           |         |       |
| Prof           | We show t      | hat no a                    | wattar   | hai        |         |           |         |       |
| 100 <u>7</u> . |                |                             | ·IUL LET |            |         |           |         |       |
|                |                |                             |          |            |         |           |         |       |
|                |                |                             |          |            |         |           |         |       |
|                |                |                             |          |            |         |           |         |       |
|                |                |                             |          |            |         |           |         |       |
|                |                |                             |          |            |         |           |         |       |
|                |                |                             |          |            |         |           |         |       |

Powers in groups  
For 
$$g \in G$$
, we write  
 $g^2 = gg$   
and  
 $g^3 = ggg$   
so for example,  $(ab)^2 = (ab)(ab)$   
Nate: If  $ab = ba$ , i.e.  $a$  and  $b$  commute then, in this case  
 $(ab)^2 = (ab)(ab) = a(ba)b = a(ab)b = a^2b^2$   
Hourver  
In general  $(ab)^2 \neq a^2b^2$   
Definition,  
For  $n \in \mathbb{N}$  and  $g \in G$   
 $g^n = (g^{-1} \dots g^{-1}) = (g^{-1})^n$   
Properties. Index Laws  
Let  $G$  be a group. For any  $g \in G$  and  $z_1, z_2 \in \mathbb{Z}$ , we have  
 $i) g^3, g^2 = g^{2+2z}$   
 $2i(g^{-1})^{3-2} = g^{2+2z} = g^{2-2}g^{-1}$ 

so that powers of g commute with each other.

| Notation:       |                                     |                                      |
|-----------------|-------------------------------------|--------------------------------------|
|                 | <u>Multiplicative</u>               | Additive                             |
| X * y           | xy                                  | xty                                  |
| identity        | e or 1 or egor la                   | $O \text{ or } O_{\mathcal{G}}$      |
| inverse         | x <sup>-1</sup>                     |                                      |
| 001187          | x <sup>2</sup>                      | 2x                                   |
| power           |                                     |                                      |
| index laws      | $(g') = g''^2$                      | $Z_1(Z_2g) = (Z_2)g$                 |
|                 | $g^{2_1}g^{2_2} = g^{2_1+2_2}$      | $z_{1}g + z_{2}g = (z_{1} + z_{2})g$ |
|                 |                                     |                                      |
| Orders of eler  |                                     |                                      |
| Let G be a      | group. For aEG, n                   |                                      |
|                 | $a^0 = e$ , $a^n = a \cdots a$      | (n terms)                            |
|                 | $a^{n} = (a^{-1})^{n} =$            | (a <sup>r</sup> ) <sup>-1</sup>      |
|                 | $\implies e^{-1} = e$ , we hav      |                                      |
| M120 66 = 6     |                                     |                                      |
|                 | $e^{0}=e^{i}; e^{n}=$               |                                      |
|                 | (e <sup>-</sup> ) <sup>n</sup> =    | n terms                              |
|                 | (e / =                              |                                      |
| i.e.            | $e^2 = e  \forall z \in \mathbb{Z}$ |                                      |
|                 |                                     |                                      |
| Consider the    | list a <i>eG</i>                    |                                      |
|                 | $(=a'), a^2, a^3,$                  |                                      |
|                 |                                     |                                      |
| so either atle  | ast one a <sup>i</sup> =e or n      |                                      |
| Definition, ord | ler of element aEG                  |                                      |
| Let G be        | a group. For any a                  | e G                                  |
|                 | •                                   | a) is the least nEIN such that       |
|                 |                                     |                                      |
|                 |                                     | such nen exists                      |
| If no such      | n exists, then O(a):                |                                      |
|                 |                                     |                                      |

<u>Caution!</u> o(a) does NOT have the same meaning as the order of G For any aEG, we have  $o(a) = 1 \iff a = e \iff a = e$ So e is the ONLY element of order 1 For any aEG, we have  $o(a) = 2 \iff a = a \neq e$  and  $a^2 = e$  $\iff$  a  $\neq$  e and a<sup>-1</sup>=a o(a)=1 or 2 \iff a is self-inverse Examples: 1) (R\*, x) · 1 has order 1 (identify)  $\cdot$  -1 has order 2 ;  $x^2 = 1 \implies x = -1$ · For  $x \in \mathbb{R}^{n} \setminus \{-1, 1\}, x^{n} \neq 1 \forall n \in \mathbb{N} \Longrightarrow o(x) = \infty$ 2) (C\*,×) • i has order 4 since  $i^{1}=i, i^{2}=-1\neq 1, i^{3}=-i\neq 1, i^{4}=1$  Infact C<sup>\*</sup> contains elements of every order. To see this, consider  $z \in C^*$ Z=re<sup>i0</sup> Want to find smallest integer such that  $z^n = 1$  $z^n = r^n e^{in\theta} = 1 \implies r^n = 1$  and  $e^{in\theta} = 1 \implies n\theta = 2k\pi (e^{i2\pi k} = 1)$  $r = 1 \implies r^n = 1 \quad \forall n \in \mathbb{N}$  and then  $n\theta = 2K\pi \implies \theta = \frac{2K\pi}{n}$ 

⇒ 0 can take any value

$$r \neq 1 \implies n=0$$
  
3) (R,+)  
• 0(0) = 1 (identify)  
•  $x \neq 0$ ,  $0(x) = \infty$  as  $x + \dots + x$  (n times)  $\neq 0$  Unend  
h) (GL(2,R), x)  
• The matrix (-10) has order 2  
Theorem,  
Let G be a finite group and let  $a \in G$ . Then,  
 $0(a)$  is finite  
proof: (counting argument):  
The list  
 $a, a^2, a^3, \dots$  is an infinite sequence of a finite set  
Sequence must contain repeats, say  
 $a^1 = a^1$  where  $i \neq j \implies a^1a^1 = a^2a^3$   
 $\implies a^2 = a^{1-1}$   
 $\implies a^2 = a^2$   
 $a^3 = a^4 = a^2$ ,  
 $a^4 = a^2 = a^2$   
 $a^7 = a^4 = a^2 = a^2$   
 $a^7 = a^6 = a^2 = a^3$   
 $a^7 = a^6 = a^2 = a^3$   
 $a^8 = (A^3)^2 = e^2 = e^2$ 

Also in the direction.

$$\vec{a} = \vec{a}, \quad \vec{a} = \vec{a}, \quad \vec{a}^{4} = (\vec{a}^{4})^{-1} = \vec{e}^{-1} = \vec{e}$$

... So rewrite the first line to the second

For example, 
$$a = a = a = a^3$$

Lemma Remainder Lemma

Let 
$$a \in G$$
 with  $o(a) = n < \infty$ . Let  $Z, Z' \in \mathbb{Z}$  with  $Z = nq + r$  where  $q, r \in \mathbb{Z}$ ,  $0 \leq r < n$ .

(1) 
$$a^{2} = a^{7}$$
  
(2)  $0 \le s < t < n \implies a^{s} \ne a^{t}$   
(3)  $a^{2} = e \iff n \mid z \iff z \equiv 0 \pmod{n}$   
(4)  $a^{2} = a^{2} \iff z \equiv z' \pmod{n}$ 

Proof:

$$a^{nq}a^{\gamma} = (a^{n})^{q}a^{\gamma}$$
$$= e^{q}a^{\gamma}$$

$$a^{3}=a^{7} \implies a^{t-3}=e \implies o(a)=t-s < n \ \# \ contradiction \ as \ o(a)=n$$

So 
$$a^{s} \neq a^{t}$$
  
(3)  $a^{2} = e \iff a^{2} = e$   
if  $O < r < n$ ,  $\implies$  contradicts  $O(a) = n$ . Therefore  
 $r = O \implies n \mid z$  (remember  $0 \le r \le n$ )  
since  $a^{i} \neq e$  for any is with  $O < i < n$  and  $O \le r \le n$ 

(4) 
$$a^{z} = a^{z'} \iff a^{z-z'} = e \iff n \mid (z-z') \iff z = z' \equiv (mod n)$$

using (3)

Consequently if  $o(a) = n < \infty$ , then

a = a

is a complete list of the distinct powers of a

<u>Example</u>

1) Let 
$$o(a) = 3$$
. Then the remainders are  $0, 1, 2$  and  
 $\{a^2, 2 \in \mathbb{Z}^3 = \{a^0, a^1, a^2\} = \{e, a, a^2\}$  and  $|\{e, a, a^2\}| = 3$   
Also  $22 = 7.3 \pm 1$ 

Subgroups

Definition, SubgroupsLet G be a group. Let 
$$H \subseteq G$$
.Then, H is a subgroup of G denoted  $H \subseteq G$  if(i)  $a, b \in H \Longrightarrow ab \in H$ (ii)  $a \in H \Longrightarrow a^{l} \in H$ (iii)  $a \in H \Longrightarrow a^{l} \in H$ (iii)  $e \in H$ (iii)  $e \in H$ 

 $= \alpha (\alpha)$ 

Note: H&G => H is a group under the restriction, of the binary operation in G to H The converse is also true, that is

 $\forall$  H  $\leq$  G, H  $\leq$  G  $\iff$  (H, o) is a group, 'o' is the restriction, of binary operation of G to HxH

<u>proof</u>: H is a group under same binary operation  $\implies$  H is closed under this operation. Since H is a group, it contains an identity say  $f \in H \implies f^2 = f \in G$  and  $e^2 = e$  in G

Let  $a \in H$ . Inverse of 'a' in, H is an element b such that  $\Longrightarrow e = f$  and  $e \in H$ 

But by above  $e=f \implies a' \in G$  is unique satisfying (\*). Hence  $b=a' \in H$ .

### <u>Examples</u>:

1) 
$$\mathbb{Z} \leq \mathbb{Q} \leq \mathbb{R} \leq \mathbb{C}$$
  
2)  $\mathbb{Q}^{*} \leq \mathbb{R}^{*}$  BUT  $(\mathbb{R}^{*}, x)$  is NOT a subgroup of  $(\mathbb{R}, +)$   
3) For n \in N,  $n\mathbb{Z} = \{n\mathbb{Z}: \mathbb{Z} \in \mathbb{Z}^{3}\}$  (eg  $2\mathbb{Z} = \{\dots, -4, +2, 0, 2, 4, \dots\}$   
Then,  $n\mathbb{Z} \leq \mathbb{Z}$   
4)  $SL(n, \mathbb{R}) = \{A \in M_{n}(\mathbb{R}) \mid \det A = 1\}$  Then,  $SL(n, \mathbb{R}) \leq GL(n, \mathbb{R})$   
proof:  
As det  $A = 1 \neq 0$   $\forall A \in SL(n, \mathbb{R}) \implies SL(n, \mathbb{R}) \leq GL(n, \mathbb{R})$   
 $\implies SL(n, \mathbb{R}) \leq GL(n, \mathbb{R})$   
(ii) det  $I_{n} = 1 \implies I_{n} = e \in SL(n, \mathbb{R})$   
iii) det  $A^{-1} = 1 \implies I_{n} = e \in SL(n, \mathbb{R})$   
iii) det  $A^{-1} = 1 \implies I_{n} = n \Rightarrow A^{-1} \in SL(n, \mathbb{R})$   
iii) det  $A^{-1} = 1 \implies A^{-1} \in SL(n, \mathbb{R})$   
Hence  $SL(n, \mathbb{R}) \leq GL(n, \mathbb{R})$   
5) For any group  $G$ ,  $\{e\} \leq G$ ,  $G \leq G$   
Definition, Special Linear Group  
 $SL(n, \mathbb{R}) = \{A \in M_{n}(\mathbb{R}): \det A = 1\}$   
Cyclic Subgroups  
Definition,

Let G be a group, 
$$a \in G$$
. We define  
 $\langle a \rangle = \{a^{\mathbb{Z}} : \mathbb{Z} \in \mathbb{Z}^{3}\}$ 

In '+' notation

 $\langle a \rangle = \{ z a : z \in \mathbb{Z} \}$ 

If 
$$o(a) = \infty$$
 then  $a^{i} = a^{j} \implies i = j$   
If  $o(a) = \infty$  then if  $i < j$  and  $a^{i} = a^{j} \implies a^{j-i} = e$  contradiction  $\not >$   
so  $\dots a^{2}, a^{i}, e, a, a^{2} \dots$  are all distinct  $\implies |\langle a \rangle| = \infty$   
Since  $a^{i} = a^{j} \implies a^{j-i} = e$ , so if  $j-i \neq 0$ , we would say  $O(a) \leq |j-i|$   
Hence if  $O(a) = \infty$ ,  $|\langle a \rangle| = \infty$   
If  $O(a) = n \in \mathbb{N}$ , then from remainder lemma,  $\langle a \rangle = \{e, a, a^{2}, \dots, a^{n-1}\}$  and  $e, a, a^{2}, \dots, a^{n-1}$  are  
distinct  
if  $O(a) = n$ ,  $|\langle a \rangle| = n$  and  $\langle a \rangle = \{e, a', \dots, a^{n-1}\}$   
Lemma

For any 
$$a \in G$$
, we have  $\langle a \rangle$  is a commutative subgroup of G and  $|\langle a \rangle| = o(a)$ 

<u>Proof</u>

We have shown 
$$|\langle a \rangle| = o(a)$$
  
 $e = a^{\circ} \in \langle a \rangle$   
if  $a^{h}, a^{k} \in \langle a \rangle$ , then  $a^{h}a^{k} = a^{h+k} \in \langle a \rangle$   
 $(a^{h})^{-1} = \overline{a^{h}} \in \langle a \rangle$ , hence  $\langle a \rangle \leq G$ 

$$a^{h}a^{k} = a^{h+k} = a^{k}a^{h}$$
 hence  $\langle a \rangle$  is commutative

<u>Remark:</u>

If 
$$o(a) = n$$
, then  $a^{-1} = a^{n-1}$   
 $a^{-2} = a^{n-2}$  etc  
If n is even,  $o(a^{n/2})^{-1} = a^{n/2}$ 

Definition Cyclic Subgroup

(ii) a group is cyclic if  $G = \langle a \rangle$  for some  $a \in G$ . Then we say a generates G

0

**Propertion**  
Let G be a group with 
$$|G| = n < \infty$$
 finite  
Then, G is cyclic  $\iff \exists a \in G$  with  $o(a) = n$ .  
**Proof**:  
For any  $a \in G$ ,  $\langle a \rangle \leq G$   
 $G = \langle a \rangle \iff |\langle a \rangle| = |G|$   
 $\iff |G| = o(a)$   
 $\iff o(a) = n$ .  
**Examples**  
i) Z is cyclic as  $Z = \langle 1 \rangle = \langle -1 \rangle$   
ii) Q is not cyclic as if  $Q = \langle a \rangle$  then,  $a \neq 0$  and  $Q = \{ \cdots, -2a, a, 0, a, 2a, \cdots \}$   
But  $\underline{a} \in Q$  but  $\underline{a} \notin \langle a \rangle$   
ii) In  $Z_n$ ,  $o([1]) = n$ , as  
 $[1] \oplus [1] \oplus \cdots \oplus [1] = [n] = [n]$   
So  $Z_n$  is cyclic and  $Z_n = \langle [1] \rangle$   
ii) In K, we have  $K = \{e, a, b, c\}$  and  $o(e) = 1$ ,  $o(a) = o(b) = o(c) = 2$   
Hence K not cyclic  
 $\langle e \rangle = \{e\}$ ,  $\langle a \rangle = \{e, a\}$ ,  $\langle b \rangle = \{e, b\}$ ,  $\langle c \rangle = \{e, c\}$ 

Theorem,

Proof:

(1) 
$$o(a) = n = uV \implies o(a^{u}) = V$$
 (Exercises)  
 $\implies a^{u}$  generates cyclic subgroups of order  $V$   
 $\implies \langle a^{u} \rangle = \{e, a^{u}, a^{2u}, \cdots, a^{(r_{1})n}\} \leq G$  with  $|\langle a^{u} \rangle| = V$ 

(2) Let 
$$H \leq G$$
 where  $G = \langle a \rangle$  is cyclic  
Suppose  $H = \{e\}$ , then  $H = \langle e \rangle \implies H$  is cyclic  
Assume  $H \neq \{e\}$ . So  $\exists a_i \in H$  where  $i \neq 0$ . Then,  $a^{i} = (a^{i})^{-1} \in H$   $H$  a subgroup  
So we have  $a^{i}, a^{i} \in H$ , so we can find a least  $n \in \mathbb{N}$  with  $a^{n} \in H$  (well ordering)  
Let  $a^{i} \in H$ . By division, algorithm,  $\exists q, r \in \mathbb{Z}$   
 $j = nq + r, \quad 0 \leq r \leq n$ .  
Now  $a^{r} = a^{j-nq} = a^{j}(a^{r})^{-p} \in H$  as  $a^{j} \in H$  and  $a^{r} \in H$  closure  
Since  $n$  is least,  $r = 0$  else we controdict the minimality of  $n$ .  
 $r = 0 \implies j = nq$ .  
 $\implies n|_{j}$   
We now have  $\langle a^{n} \rangle \leq H \leq \langle a^{n} \rangle \quad \therefore H = \langle a^{n} \rangle$  and so cyclic  $\blacksquare$ 

Examples:

1) In Q<sup>\*</sup>, we have 
$$\langle 2 \rangle = \{2^{2}, z \in \mathbb{Z}\} = \{\dots, \frac{1}{4}, \frac{1}{2}, 1, 2, 4, \dots\}$$
  
2) In Z, we have  $\langle 2 \rangle = \{2z : z \in \mathbb{Z}\} = \{\dots, -4, -2, 0, 2, 4, \dots\}$   
2) In Z<sub>6</sub>  $\langle 2 \rangle = \{[0], [2], [4]\}$ ,  $|\mathbb{Z}_{6}| < \infty$ ,  $o(2) < \infty$   
3) In,  $(\mathbb{Z}_{7}^{*}, \otimes)$ , the element [3] has order 6 as dropping '[]'  
 $3 \neq 1$ ,  $3^{2} = 2 \neq 1$ ,  $3^{3} = 6 \neq 1$ ,  $3^{4} = 4 \neq 1$ ,  $3^{5} = 5 \neq 1$ ,  $3^{6} = 15 = 1$   
So  $\mathbb{Z}_{7}^{*}$  has subgroups of order 1, 2, 3, 6 by Theorem, pg 30.  
 $\{1\} = \langle 3^{6} \rangle$  has order 1  
 $\mathbb{Z}_{7}^{*} = \langle 3^{1} \rangle$  has order 6  
 $\langle 3^{2} \rangle = \{2, 4, 1\} = \langle 2 \rangle$  has order 3  
 $\langle 3^{3} \rangle = \{6, 1\} = \langle 6 \rangle$  has order 2.

### 3. Symmetric Groups

### Symmetric Groups

Let X be a non-empty set  $X \neq 0$  (often  $X = [n] = \{1, ..., n\}, n \in \mathbb{N}$ )

We write  $I_X$  for the identity map  $I_X: X \rightarrow X$ . If X=[n], we write  $I_n$  for  $I_{[n]}$ 

### Definition, Symmetry

Let X be a set. A bijection,  $\sigma: X \rightarrow X$  is called a symmetry

We denote by  $S_X$  the set of all bijections from X to X.

$$S_X = \{ \sigma : \sigma \text{ a symmetry of } X \}$$

If X=[n], we write Sn for Sn1

Notation: The binary operation represented by 'o' is composition of a function

Proposition Symmetric Group

The pair (Sx, o) is a group, the symmetric group on X

#### <u>Proof</u>:

Let d, BESx. Then

$$\mathcal{A}: X \rightarrow X \text{ and } \mathcal{B}: X \rightarrow X$$

are bijections. Certainly

$$\alpha \circ \beta : X \longrightarrow X$$

Also as a and  $\beta$  are bijections, so is dop  $\Longrightarrow$  dop ex

Therefore o is a binary operation on Sx

Associativity: Composition of functions is associative

<u>Identity</u>:  $I_x \in S_x$  and for any  $\alpha \in S_x$ , we have

<u>Inverse</u>: Finally, if  $\Delta \in S_X$ , then the inverse function,  $\Delta^{-1}: X \to X$  exists and is a bijection  $\Delta^{-1} \in S_X$  and  $\Delta \circ \Delta^{-1} = I_X = \Delta^{-1} \circ \Delta$ 

So (Sx, o) is a group

f.g: 
$$A \rightarrow B$$
, f=g means  $f(a) = g(a)$  Vac A  
Note: We often drop mention of 'o'  
Example  
i)  $n=1$ ;  $S_1 = \{I_1\}$ , the table is  
 $\frac{o|}{I_1} = \frac{T_2}{I_1|}$   
(2)  $n=2$   
 $S_2 = \{I_2, d\}$  where  $d: X_2 \rightarrow X_2$ ;  $d(1)=2$ ,  $d(2)=1$   
The table is  
 $\frac{o|I_2|}{I_2|I_2|} = \frac{1}{A}(d(1)) = d(d(1)) = d(2) = 1$   
The table is  
 $\frac{o|I_2|}{I_2|I_2|} = \frac{1}{A}(d(2)) = d(d(2)) = d(2) = 1$   
 $I_2|I_2| = \frac{1}{A}(d(2)) = d(d(2)) = d(2) = 1$   
(3)  $n=3$ , we have  $I_3 \in S$ ,  $e \in S$  where  
 $e(1)=2$ ,  $e(2)=3$ ,  $e(3)=1$ .  
Two row notation.  
We can write  $d \in Sn$  as  
 $d= \begin{pmatrix} 1 & 2 & \dots & n \\ d(1) & d(2) & \dots & d(n) \end{pmatrix}$   
For example in (3) above  
 $e= \begin{pmatrix} 1 & 2 & \dots & n \\ d(2) & \dots & d(n) \end{pmatrix}$   
For example in (3) above  
 $e= \begin{pmatrix} e=(1 & 2 & 3 & 4 \\ 2 & 3 & 4 \end{pmatrix}$   
This means that  $p(1)=2$ ,  $p(2)=3$ ,  $p(3)=4$ ,  $p(4)=1$ 

$$\mathbf{\tilde{1}} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$

 $(\beta r)(1) = \beta(r(1)) = \beta(2) = 3$   $\beta(r(3)) = \beta(r(3)) = \beta(4) = 2$ 

 $(\beta \gamma)(2) = \beta(\gamma(2)) = \beta(1) = 2$   $\beta(\gamma(4)) = \beta(\gamma(4)) = \beta(3) = 4$ 

 $S_0 \quad \beta \Upsilon = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$ 

Working out YB, we have

 $\Upsilon \beta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix} \neq \beta \Upsilon$ 

<u>Remark:</u>

If  $\sigma, \tau \in S_n$ , the composition is abbreviated to  $\sigma \tau$  referred to as the product of  $\sigma \otimes \tau$ 

Caution! Permutation product is applied right to left

σr: Apply T first then σ

#### Remark

In, two-row notation, for des<sub>n</sub>, each element of [n] = {1,...,n} occurs exactly once on the second row

$$I_{f} \quad \alpha = \begin{pmatrix} 1 & 2 & \cdots & x & \cdots & y & \cdots & n \\ \alpha(1) & \alpha(2) & \cdots & \alpha(x) & \cdots & \alpha(y) & \cdots & \alpha(n) \end{pmatrix}$$

Then if  $\alpha(x) = \alpha(y)$ , we have x = y ( $\alpha$  is one to one)

As  $\alpha$  is onto, any  $z \in \{1, ..., n\}$  appears on the second row, we have

$$Z = \alpha(t)$$
 for some  $t$ , so

$$\alpha = \begin{pmatrix} 1 & \cdots & t & \cdots & n, \\ \alpha(1) & \cdots & 2 & \cdots & \alpha(n) \end{pmatrix}$$

Note

Thus the second row is a permutation/rearrangement of the first.

As there are n! permutations of n elements

 $|S_n| = n!$  $|S_1| = 1! = 1 \quad \cdot |S_2| = 2! = 4 \quad \cdot |S_3| = 3! = 6$ 

|   | Th | e   | 6   | ele            | mei      | nts        | 0- | fS             | 2 | ave              | 2              |     |     |                |          |                  |    |     |     |                |            |      |     |                |      |      |   |
|---|----|-----|-----|----------------|----------|------------|----|----------------|---|------------------|----------------|-----|-----|----------------|----------|------------------|----|-----|-----|----------------|------------|------|-----|----------------|------|------|---|
|   |    |     |     |                |          |            |    |                |   |                  | -              | /   |     |                |          | 2                | 7  |     | _ \ |                |            |      | _3  | _              |      |      |   |
|   |    |     |     | I <sub>J</sub> | =        |            | 2  | 3              |   |                  | (=             |     | 2   | 3              |          | ( <sup>2</sup> = | :/ | 2   | 3   |                |            |      | e = | I <sub>3</sub> | ;—   |      |   |
|   |    |     |     |                |          | LI.        | 2  | 5              | / |                  |                | J   | 2   | 1/             | /        | <br>             | Y  | I   | 2/  |                |            |      |     |                |      |      |   |
|   |    |     |     | Γ              | - /      | 1          | 2  | 2 \            |   |                  | ĸ              | _ / | · - | 2              | 2\       |                  | Л  | _/  |     | 2              | 2          |      |     |                |      |      |   |
|   |    |     |     | 1              |          | 1          | 2  | 3<br>2/        |   |                  | <sup>0</sup> 2 | - ( | 3   | 2              | 3)<br>() |                  | 3  | - ( | 2   | 4              | 3          |      |     |                |      |      |   |
|   |    |     |     |                |          |            |    | -/             |   |                  |                |     |     |                | 1/       | <br>             |    | ``  | -   | •              | - /        |      |     |                |      |      |   |
|   | M  | alt | ipl | ica            | tion     | 1          | ta | ble            |   |                  |                |     |     |                |          |                  |    |     |     |                |            |      |     |                |      |      |   |
|   |    |     |     |                |          | •          |    |                |   |                  |                |     |     |                |          |                  |    |     |     |                |            |      |     |                |      |      |   |
|   |    |     | 0   | I              | 3        | ९          |    | e <sup>2</sup> |   | δI               |                | O2  |     | δ3             |          |                  |    |     |     |                |            |      |     |                |      |      |   |
|   |    |     | I3  | I<br>I         | <u> </u> | C          |    | e <sup>2</sup> |   | $\sigma_{\rm I}$ |                | 62  |     | б,             |          |                  | As | f   | ٥Y  | e>             | lar        | ıple | 2   |                |      |      |   |
|   |    |     |     |                |          |            |    | _              |   | _                |                |     |     |                |          |                  |    |     |     |                |            |      |     |                |      |      |   |
|   |    |     | P   | P              |          | l2         | •  | Ι,             | _ | бз               |                | б   |     | σz             |          |                  |    |     | e ( | 5 <sub>1</sub> | <b>† C</b> | 5, 9 |     |                |      |      |   |
|   |    |     | 2   | e <sup>2</sup> |          | Т          |    | 0              |   | ۶                |                | 5   |     | <b>C</b>       |          |                  |    | C   |     |                | 107        | -    |     |                | 1    |      |   |
|   |    | _   | 7   | ٢              |          | $I_3$      | 3  | C              |   | δ2               |                | 63  |     | б <sub>1</sub> |          |                  |    | ავ  | [2  | 5 <b> </b>     | V0         |      | 601 | nmi            | ntal | tıVe | e |
|   |    |     | ۲   | σ              |          | δ,         |    | 5              |   | Т                |                | e   |     | e <sup>2</sup> | •        |                  |    |     |     |                |            |      |     |                |      |      |   |
| _ |    |     | 21  | 141            |          | <b>U</b> 2 | 2  | б,             |   | I,               |                | 1   | -   | •              |          | <br>             |    |     | -   | -              |            |      | -   |                |      |      |   |

## Cycle Notation

Some elements in 
$$S_n$$
 can be written as cycles

For example 
$$P \in S_3$$
, we write  $P = (1 \ 2 \ 3)$ , we mean

We would get same function by writing

Definition, Cycle

$$d = (a_1, \ldots, a_m)$$

where 
$$a_1, a_2, \dots, a_m \in \{1, \dots, n\}$$
 and  $a_i \neq a_j$  for  $i \neq j$ 

It is the bijection defined by

$$\alpha(a_1) = a_2$$
  $\alpha(a_2) = a_3$ , ...,  $\alpha(a_{m-1}) = a_m$ ,  $\alpha(a_n) = a_1$ 

and 
$$d(x) = x$$
  $\forall x \in \{1, ..., n\} \setminus \{a_1, ..., a_m\}$  fixes other elements

We can write

$$a_1 \mapsto a_2 \mapsto \dots \mapsto a_{m-1} \mapsto a_m \mapsto a_1$$

Cycles from, left to right; they can have any starting point

### Cycle decomposition

Not every permutation, however every permutation can be written as a product of of cycles

Example In S3

 $e = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ 

This means 1 → 2 → 3 → 1

In cycle notation, e = (123), Similarly  $e^2 = (132)$ 

For  $O_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$ :  $2 \mapsto 3 \mapsto 2$   $1 \mapsto 1$  (fixed)

 $\implies \sigma_1 = (2, 3)$ 

Similarly  $\sigma_2 = (13)$  $\sigma_3 = (12)$ 

Example

 $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 4 & 5 & 3 \end{pmatrix} \in S_5$ 

Here we have  $1 \mapsto 2 \mapsto 1 \implies (12)$ 

3174 175 173 ⇒ (345)

Therefore  $\beta = (345)(12)$  product is composition.

<u>Remark</u>: In the example above product is composition.

 $\beta = (3 4 5)(1 2)$ 

operation done from right to left.

We could also have written, B = (12)(345)

Mixing notation;

You could write
 
$$(1 \ 2 \ 3 \ 4 \ 5)$$
 $(1) = 2$ 
 tend
 NOT to

 or
  $(12)(4) = 4$ 
 $(12)(4) = 4$ 
 $(12)(4) = 4$ 
 $(12)(4) = 4$ 
 $(12)(4) = 4$ 

 Note:
  $(12)(4) = 4$ 
 $(12)(4) = 4$ 
 $(12)(4) = 4$ 
 $(12)(4) = 4$ 
 $(12)(4) = 4$ 

1) In 
$$S_5$$
 (3245)(124) = (12345) = (14)(253) (not a cycle)  
(45213)

Note: Compose cycles from right to left, they are functions; cycles 'cycle' from left to right

Inverse of a cycle

The inverse of the cycle

$$a_1 \mapsto a_2 \dots \mapsto a_{m-1} \mapsto a_m \mapsto a_1$$

is the cycle

$$a_m \mapsto a_{m-1} \mapsto \cdots \mapsto a_2 \mapsto a_1 \mapsto a_m$$

Hence 
$$(a_1 a_2 \cdots a_m)^{-1} = (a_m a_{m-1} \cdots a_1)$$

Observe that

$$(a_1 \cdots a_n) (a_n a_{m-1} \cdots a_2 a_1) = I_n$$
  
 $(a_n a_{m-1} \cdots a_2 a_1) (a_1 \cdots a_n) = I_n$ 

Lemma

Order of a cycle of length m is m

# Proof:

|    | UUT.               |     |                                                      |       |                                        |                   |                   |                                        |                 |        |                   |      |          |      |     |     |              |     |                 |     |       |             |    |     |      |   |
|----|--------------------|-----|------------------------------------------------------|-------|----------------------------------------|-------------------|-------------------|----------------------------------------|-----------------|--------|-------------------|------|----------|------|-----|-----|--------------|-----|-----------------|-----|-------|-------------|----|-----|------|---|
|    | Let                | d=  | (a,                                                  | a,    | ···· a,                                | ,) {              | 5.                | 1                                      | her             | ١,     |                   |      |          |      |     |     |              |     |                 |     |       |             |    |     |      |   |
|    |                    |     | ,                                                    | -     |                                        |                   |                   |                                        |                 |        |                   |      |          |      |     |     |              |     |                 |     |       |             |    |     |      |   |
| _  |                    |     |                                                      |       |                                        | ٩١                | (a <sub>1</sub> ) | ) = (                                  | a <sub>2</sub>  |        |                   |      |          |      |     |     |              |     |                 |     |       |             |    |     |      |   |
|    |                    |     |                                                      |       |                                        | م2<br>مر          | (a1)              | ) =                                    | x (a            | x(a    | ( <sub>1</sub> )) | = a  | 3        |      |     |     |              |     |                 |     |       |             |    |     |      |   |
|    |                    |     |                                                      |       |                                        | d m               | -I <sub>/</sub>   |                                        | •               |        | -                 |      | <b>,</b> |      |     |     |              |     |                 |     |       |             |    |     |      |   |
|    |                    |     |                                                      |       |                                        | α                 | (0                | կ)։                                    | α,              | V      |                   |      |          |      |     |     |              |     |                 |     |       |             |    |     |      |   |
|    |                    |     |                                                      |       |                                        | ď                 | Yai               | ) =                                    | २(              | a "n   | ) :               | = a, |          |      |     |     |              |     |                 |     |       |             |    | _   |      |   |
| _  | Hence              |     | • • •                                                | ا م ا |                                        |                   | L                 | (                                      | 1.              | ,K/    |                   |      | ~        | •    |     |     |              |     |                 |     |       |             |    |     |      |   |
|    |                    |     |                                                      |       |                                        |                   |                   |                                        |                 |        |                   |      |          |      |     |     |              |     |                 |     |       |             |    |     |      |   |
|    | Also               | the | S                                                    | ame   | e ara                                  | zum               | ent               | 9                                      | ives            | 0      | ( <sup>m</sup> (  | (ai` | )= (     | ai   | 1   | Ę   | iει          | n   |                 |     |       |             |    |     |      |   |
| _  | Also               |     |                                                      |       |                                        | ·                 |                   |                                        |                 |        |                   |      |          |      |     |     |              |     | { <u>a</u> .    |     | 0     | ን           |    | _   |      | _ |
|    |                    |     |                                                      |       |                                        | . <del>φ</del> [" | u, ·              | , ,                                    | <sup>r</sup> m! |        |                   |      |          | ~/   | - , |     | 1 J          | 4   | al              | ,,  | . U p | <b>,</b> /. |    |     |      |   |
|    | Henc               | e   | ٥(                                                   | d)=   | = m                                    | _                 |                   |                                        |                 |        |                   |      |          |      |     |     |              |     |                 |     |       |             |    |     |      |   |
| F  | xampl              | 0 : | .(                                                   | : +   | he f                                   | ام                | 0 m 0             | nte                                    | ۰<br>۵-         | f S    |                   | are  | 2.       |      |     |     |              |     |                 |     |       |             |    |     |      |   |
|    |                    |     |                                                      |       |                                        |                   |                   |                                        |                 |        | -                 |      |          |      |     |     |              | 2   |                 |     |       |             |    | ,   |      |   |
|    | Į                  | 3 = | $\left( \begin{array}{c} 1 \\ 1 \end{array} \right)$ | 2     | $\begin{pmatrix} 3 \\ 3 \end{pmatrix}$ | _                 | P                 | =                                      | (               | 2      | 3                 | ) =  | : (1     | 23   | 3)  |     |              | የ ፡ | =(              | 1 2 | 23    | )           | =  | (13 | \$2) |   |
|    |                    |     |                                                      |       |                                        |                   |                   |                                        | •               |        |                   |      |          |      |     |     |              |     |                 |     |       |             |    |     |      |   |
|    | б                  | . = | 1                                                    | 2     | 3<br>2)                                | = (:              | 23                | )                                      |                 | δ2     | =                 | 1    | 2        | 3    | ) = | (1. | 3)           |     | 6               | 3 = | 1     | 2           | 3  | )   |      |   |
|    |                    |     | 1)                                                   | 3     | 2/                                     |                   |                   |                                        |                 |        |                   | (3   | 2        | 1/   |     |     |              |     |                 |     | \2    |             | 3, | /   |      |   |
| _  |                    |     |                                                      |       |                                        |                   |                   |                                        |                 |        |                   |      |          |      |     |     |              |     |                 |     |       |             |    |     |      | _ |
|    | 0                  | (I, | )=                                                   | 1     | o(                                     | () =              | 3                 | (                                      | o( °2           | ) =    | 3                 |      | 0(       | σ,)  | = 0 | (σ  | <u>,</u> ) : | = 0 | (o <sub>3</sub> | ) = | 2     |             |    |     |      |   |
|    |                    |     |                                                      |       |                                        |                   |                   |                                        |                 |        |                   |      |          |      |     |     |              |     |                 |     |       |             |    |     |      |   |
| No | te:                |     |                                                      |       |                                        |                   |                   |                                        |                 |        |                   |      |          |      |     |     |              |     |                 |     |       |             |    |     |      |   |
|    |                    |     |                                                      |       |                                        |                   |                   |                                        |                 |        |                   |      |          |      |     |     | r            |     |                 |     |       |             |    |     |      |   |
| )  | = ا <sub>د</sub> ک | 3!  | =                                                    | 6     | and                                    | <b>)</b>          | 2,                | 3                                      | are             | e      | pro               | oper | r d      | ivis | 03  | 0   | F            | 6   |                 |     |       |             |    |     |      |   |
| 2) | ا وک               | s r | vot                                                  | C     | ommu                                   | ntał              | ive               | a                                      | S               | for    | e                 | xar  | npl      | e    |     |     |              |     |                 |     |       |             |    |     |      |   |
|    | - 3                |     |                                                      |       |                                        |                   |                   |                                        |                 |        |                   |      |          |      | _   |     |              |     |                 |     |       |             |    |     |      |   |
|    |                    |     |                                                      |       | ľ                                      | σ <sub>1</sub> =  | (1                | 23                                     | )(2             | 23     | ) =               | : (1 | 2)       | 5    | 03  | +   | σ            | ሮ፡  | : <b>б</b>      | 2   |       |             |    |     |      | _ |
| 3) | Cycle              | 5   | N                                                    | Л     | com                                    | mut               | ativ              | le                                     | in              | q      | ene               | eral |          |      |     |     |              |     |                 |     |       |             |    |     |      |   |
|    | J                  |     |                                                      |       |                                        |                   |                   |                                        |                 | v      | '                 |      |          |      | 1.  | -1  | ,            |     |                 |     |       |             |    |     |      |   |
|    |                    |     | (12                                                  | . 4)  | (35)                                   | =                 |                   | $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ | 2<br>4          | 3<br>5 | 4                 | 53   | ) =      | -    | (3  | 5/  | (12          | 24/ | /               |     |       |             |    | _   |      |   |
|    |                    |     |                                                      |       |                                        |                   |                   | `                                      |                 |        |                   |      |          |      |     |     |              |     |                 |     |       |             |    |     |      |   |
|    | and                | als | 0                                                    |       | (12)(                                  | 35                | ) =               | (3                                     | 5)(             | 2      | )                 |      |          |      |     |     |              |     |                 |     |       |             |    |     |      |   |
|    |                    |     |                                                      |       |                                        |                   |                   |                                        |                 |        |                   |      |          |      |     |     |              |     |                 |     |       |             |    |     |      |   |

Definition, Disjoint Cycles

2 cycles are disjoint if they have no elements in common

$$(a_1 \cdots a_m)$$
 and  $(b_1 \cdots b_K)$  are disjoint if

$$\{a_1, \dots, a_m\} \cap \{b_1, \dots, b_k\} = \emptyset$$

Proposition,

Disjoint cycles commute i.e. 
$$\alpha$$
,  $\beta \in S_n$  are disjoint cycles then,  
 $\alpha \beta = \beta \alpha$ 

Proof:

Let 
$$x \notin \{a_1, \dots, a_r, b_1, \dots, b_m\}$$
  
 $d\beta(x) = \alpha(\beta(x)) = \alpha(x) = x$   
 $\beta \alpha(x) = \beta(\alpha(x)) = \alpha(x) = x$   
So  $\alpha \beta(x) = \beta \alpha(x)$   
Consider  $a_i \in \{b_1, \dots, b_m\}$  we have  
 $d\beta(a_i) = \alpha(\beta(a_i)) = \alpha(a_i) = a_{i+1}$   
 $a_{i+1} = 1$   
 $\Rightarrow \alpha \beta(a_i) = \beta(\alpha(a_i)) = \beta(a_{i+1}) = a_{i+1}$   
 $\gamma + 1 = 1$   
 $\Rightarrow \alpha \beta(a_i) = \beta \alpha(a_i)$   
Similarly  $(d\beta)(b_j) = \beta \alpha(b_j)$   $\forall b_j \notin \{a_1, \dots, a_N\}$ 

Hence as  $(\alpha\beta)(\gamma) = (\beta\alpha)(\gamma) \quad \forall \gamma \in \{1,...,n\}$ , we have

Proposition, Cycle decomposition,

Let dESn. Then

 $\alpha = \Upsilon_1 \Upsilon_2 \cdots \Upsilon_K$ 

where Vi,..., VK are disjoint cycles.

This expression is unique except for the order in which the cycles are written.

We interpret the empty product as In

Proof: Let de Sn

Consider list of numbers 1,...,n

Choose the first i in the list such that  $\alpha(i) = i$  (if no such i exists then  $\alpha = I_n$  and  $I_n$ ) Consider the list

$$i = \alpha^{\circ}(i), \quad \alpha(i), \quad \alpha^{2}(i), \quad \alpha^{3}(i)$$

list must be finite as it is contained in {1,...,n} and so must contain, repeats

Suppose that  $\alpha^{u}(i)$  is the first power to be repeated and  $\alpha^{u}(i) = \alpha^{u+v}(i)$  where v>0 is the first repeat

The inverse of  $\alpha^{\mu}$  in the group  $S_n$  is  $a^{\mu}$  so that  $i = I_n(i) = \alpha^{-\mu} \alpha^{\mu}(i) = \alpha^{-\mu} \alpha^{+\nu}(i) = \alpha^{(-\mu)+(\mu+\nu)}(i) = \alpha^{\nu}(i)$ 

the conclusion is that  $\alpha^0$  is the first repeated power, that is u=0. Also  $\alpha'(i)$  is the first repeat of the list.

are all distinct. Put  $K_1 = v - 1$ . Let  $\Upsilon_1$  be the cycle

$$\mathfrak{F}_{1} = (\mathfrak{i}_{1} \, \mathfrak{a}(\mathfrak{i})_{1} \, \mathfrak{a}^{2}(\mathfrak{i})_{1} \, ..., \, \mathfrak{a}^{k_{1}}(\mathfrak{i}))$$

using the division algorithm, we can show that for any ZEZ

$$d^{2}(i) \in \{i, \alpha(i), \alpha^{2}(i), \dots, \alpha^{k_{i}}(i)\}$$

If a(j)=j Yj not in the list

$$i, \alpha(i), \alpha^{2}(i), ..., \alpha^{k_{i}}(i)$$

we stop. Otherwise pick the smallest j not in the list and consider the elements

We cannot have  $\alpha^{u}(i) = \alpha^{v}(j)$ for any 0 ≤ u ≤ v as this would give j=~"(i) contradicting the choice of j (not on list of i) Arguing as above, we obtain a cycle rz  $\gamma_2 = (j, \alpha(j), \dots, \alpha^{\kappa_2}(j))$ for some  $K_2$ ; notice that is cycle is disjoint to  $Y_1$ . Continuing, we obtain disjoint cycles r, ..., r, until all elements of {1,...,n} is used up and by construction  $d = \gamma_1 \cdots \gamma_r$ Showing uniqueness, if also  $\alpha = \delta_1 \cdots \delta_s$ for disjoint cycles  $\delta_1, \dots, \delta_s$  then notice that for any  $l \in \{1, 2, \dots, n\}$  we have that  $d(l) = l \iff l \notin \mathcal{V}_i \iff l \notin \delta_j$ If l appears in  $r_n$  and  $\delta_K$ , then without loss of generality, we can assume that  $\Upsilon_{h} = (\pounds_{1}, \dots) = (\pounds_{n} \triangleleft (\ell), \dots, \triangleleft^{p} (\pounds))$ where  $\alpha^{P+1}(l) = l$ . But since we can also assume  $\delta_k$  begins with l, we have that  $\gamma_h = \delta_k$ Since disjoint cycles commute, we can also assume h=K=1 so that by cancellation  $\Upsilon_2 \cdots \Upsilon_r = \delta_2 \cdots \delta_s$ An inductive argument now yields that r=s (after relabelling) ri=si for 1≤i≤r Definition, Cycle Decomposition.

The decomposition,

 $\alpha = \gamma_1 \cdots \gamma_K$ 

as a product of disjoint cycles is called the cycle decomposition, of a

Example:

Write in cycle decomposition.  
1) 
$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 7 & 2 & 5 & 4 & 6 & 1 \end{pmatrix} \implies \alpha = (1327)(45)$$
  
2)  $(2417)(537) = (175324)$   
3)  $(537)^{-1}(2417)^{-1} = ((2417)(537)) = (175324)^{-1} = (423571)$   
Recall: Since disjoint cycles commute. If  
T and S are disjoint then,  $TS=ST$   
It follows that  $(TS)^{Z} = T^{2}S^{Z} = V_{ZC}Z$   
(general proof in exercises)  
Example: Let  $\alpha = (123)(45) \in S_{5}$   
Recall  $o(123) = 3$ ,  $o(45) = 2$   
So  $\alpha \neq T_{5}$   
 $\alpha^{Z} = ((123)(45))^{2} = (123)^{2}(45)^{2} = (132) \neq T_{5}$   
 $\alpha^{Z} = ((123)(45))^{2} = (123)^{2}(45)^{4} = (123) \neq T_{5}$   
 $\alpha^{Z} = ((123)(45))^{4} = (123)^{2}(45)^{4} = (123) \neq T_{5}$   
 $\alpha^{Z} = ((123)(45))^{5} = (123)^{2}(45)^{4} = T_{5}$   
 $\alpha^{S} = ((123)(45))^{5} = (123)^{2}(45)^{4} = T_{5}$   
so  $o(\omega) = 6 = lcm\{3, 2]$ 

are disjoint. Suppose the length of  $r_i$  is  $l_i$  for  $1 \le i \le m$ . Then,

$$o(\alpha) = |cm\{l_1, \dots, lm\}$$

Proof: Suppose 
$$d \in S_n$$
  
Let the cycle decomposition of  $d$  be  
 $d = T_1 T_2 \cdots T_m$   
where length of  $T_1$  is  $l_1$ .  
We know the order of  $T_1$   
 $o(T_1) = R$ ;  $\forall 1 \leq i \leq m$ .  
Since disjoint cycles commute,  
 $d^{i} = (T_1 \cdots T_m) = T_1^{i} \cdots T_m^{i}$  for any  $x \in \mathbb{N}$ .  
If  $x$  is a multiple of  $R_1$ , then  $T_1^{i} = I_n$ , so that if  $x$  is a common multiple of all  $T_1$ .  
 $d^{i} = T_1^{i} \cdots T_m^{i} = I_n^{i} \cdots I_n = I_n$ .  
Suppose that  $y \in \mathbb{N}$ ,  $d^{i} = T_n$  and  $y$  is not a common multiple of  $R_1, \dots, R_m$ .  
Since  $T_1^{i}$ 's commute with each other, we can assume that  $l_1$  does not divide  $y$ .  
 $y = q l_1 + r$  where  $0 < r < l_1$ .  
We know that  $T_1^{i} = T_2^{i}$ . Let  
 $T_1 = (a_1 a_2 \cdots a_{d_1})$ .  
Since the  $T_1$  are disjoint,  $a_1$  does not appear in,  $T_2, \dots, T_m$ . Thus  
 $T_3^{i'}(a_1) = a_1$  for  $2 \leq j \leq m$ .  
Now  
 $d^{i'}(a_1) = (T_1^{i'} T_2^{i'} \cdots T_m^{i'}(a_1) = a_{1+r} \neq a_1$ .  
Thus  $a^{i'} \neq I_n \not\approx contradiction$ .  
Thus  $a^{i'} \equiv I_n \not\ll contradiction$ .

(1) 
$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 4 & 3 & 1 & 6 & 5 & 2 \end{pmatrix} \in S_{7}$$
  
 $\alpha = (1724)(56)$   
 $0(\alpha) = 1cm\{4,2\} = 4$   
(2)  $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 2 & 1 & 4 & 5 & 3 & 10 & 6 & 9 & 8 & 11 & 7 \end{pmatrix}$   
 $\beta = (21)(345)(610117)(89)$   
 $0(\beta) = 1cm(2,3,4,2) = 12$ 

<u>Warning</u>: Powers of cycles do not have to be cycles, e.g (1 2 3 4)<sup>2</sup> = (1 3)(2 4)

Transposition,

Definition, Transposition,  
A transposition, is a cycle of length 2  
If 
$$d = (u, v)$$
 is a transposition,  
 $o(u)=2 \implies d = a^{-1}$   
 $\implies d$  is self inverse  
We have  $(u v)^{-1} = (v u) = (u v)$   
Let  $(1 2 3 4) \in S_4$   
Then,  $(12 3 4) = (14)(13)(12)$   
Fact: For any  $(a_1 \dots a_m) \in S_n$ ,  $(a_1 \dots a_m) = (a_m a_1)(a_{m-1}a_1) \dots (a_3 a_1)(a_2 a_1)$   
product of transpositions

Proposition.

If desn then d is a product of transpositions

**Proof**: We regard In as a product of O transpositions (also for n22, In= (12)(21)

Let  $\alpha = I_n$ , then  $\alpha = \gamma_1 \cdots \gamma_k$  for some disjoint cycles  $\gamma_1, 1 \le i \le K$ 

<u>Example</u>:

Remark:

1) Transposition representation NOT disjoint

2) Not unique B can be written as

$$\beta = (32)(13)(52)(42)(32)(76)(16)(106)(89)$$

Definition, Transposition number

The transposition, number  $T(\sigma)$  of an arbitrary permutation,  $\sigma \in S_n$  is defined to be the non-negative integer computed by decomposing  $\sigma$  into disjoint cycles and taking the following sum, n

 $T(\sigma) = \sum_{r=1}^{n} (r-1)(\#r-cycles)$ 

In other words, we take weighted sum of the number of disjoint cycles, where the weights are what we believe to be number of transpositions to factorise each cycle

<u>Note</u>: Since the decomposition, into disjoint cycles is unique,  $T(\sigma)$  is unique (well-defined)

Also  $T(I_n) = 0$ 

Example

(1)  $\sigma \epsilon S_{10}$ 

 $\sigma = (3 \ 8)(179)(254106)$ 

$$\Gamma(\sigma) = 1.1 + 2.1 + 4.1 = 7$$

(2) 0ES

$$\sigma = (3 \ 8)(17 \ 9)(2 \ 5 \ 4 \ 10 \ 6)(11 \ 12 \ 13 \ 14 \ 15)$$

 $T(\sigma) = 1.1 + 2.1 + 4.2 = 11$ 

### Note: $T(\sigma)$ is the minimum number of transpositions to completely factorize $\sigma$ .

Theorem Parity Theorem,

Let  $\sigma \in S_n$ . The number of transposition, in any complete factorization, of  $\sigma$  has the same parity as  $T(\sigma)$ 

i.e. it is always even or odd

**Proof**: Proof has 2 parts

<u>Part 1</u>: Consider  $\sigma \in S_n$  being multiplied by a transposition T = (ab) to form

When o is decomposed into disjoint cycles, there are 2 cases

1) <u>CASE 1</u>: a, b contained in same cycle

$$a b)(a c_1 \cdots c_r)(b d_1 \cdots d_s) = (b d_1 \cdots d_s a c_1 \cdots c_r)$$

$$\frac{2}{CASE 2} = a, b are contained in the same cycle}{(a b)(a c_1 \cdots c_r b d_1 \cdots d_s)} = (b d_1 \cdots d_s)(a c_1 \cdots c_r)$$
$$T(\sigma') = T(\sigma) - 1$$

Thus multiplying any permutation changes its parity <u>Part 2</u>: Using induction, let P(K) be the statement

"If  $\sigma$  is a product of K transpositions then, K has same parity as T( $\sigma$ )"

The base case P(1) is true as a transposition being a 2 cycle has transposition, number 1

For inductive step, suppose P(K) is true and  $\sigma$  is a product of K+1 transpositions.

$$= \Upsilon_{k+1} \Upsilon_k \cdots \Upsilon_1$$

Since transpositions are self inverse

$$\Upsilon_{\mu 1} \sigma = \Upsilon_{\mu} \cdots \Upsilon_{1}$$

Hence by the induction, hypothesis,  $T(T_{k+1}\sigma)$  has the same parity as K. Therefore by part 1, T(5) has opposite parity to K  $\Longrightarrow$  same parity as K+1

 $\implies$  P(k+1) is true

Definition, Sign

Let desn. Then, d is even/odd if d is product of even/odd number of transpositions

The sign of a denoted sqn(a) is defined by

So 
$$sg: S_n \rightarrow \{1, -1\}$$
  
 $sgn(d) = \begin{cases} 1 & d \text{ is even} \\ -1 & d \text{ is odd} \end{cases}$ 

Example S3

Evens: 
$$I_3$$
,  $e=(123) = (13)(12)$ ,  $e^2=(132) = (12)(21)$   
Odds:  $\sigma_1=(23)$ ,  $\sigma_2=(13)$ ,  $\sigma_3=(12)$ 

Consider a, BE Sn. Write

$$d = \mu_1 \dots \mu_r$$
,  $\beta = \nu_1 \dots \nu_s$  where  $\mu_i$ ,  $\nu_j$  are transpositions  
 $1 < i < r$   $1 < j < s$ 

Then  $\alpha \beta = \mu_1 \cdots \mu_7 v_1 \cdots v_5$  is a product of r+s transpositions

| X    | B    | Øß   | sgn(x) | sgn(B) | Sgn(& B) |
|------|------|------|--------|--------|----------|
| even | even | even |        |        |          |
| even | odd  | 640  |        | -1     | -1       |
| odd  | even | odd  | -1     |        | -1       |
| odd  | odd  | even | -1     | - 1    |          |

Definition

Let nEN. Then

$$A_n = \{ d \in S_n : d \text{ is even} \}$$

Proposition, Alternating Group We have A ≤ Sn

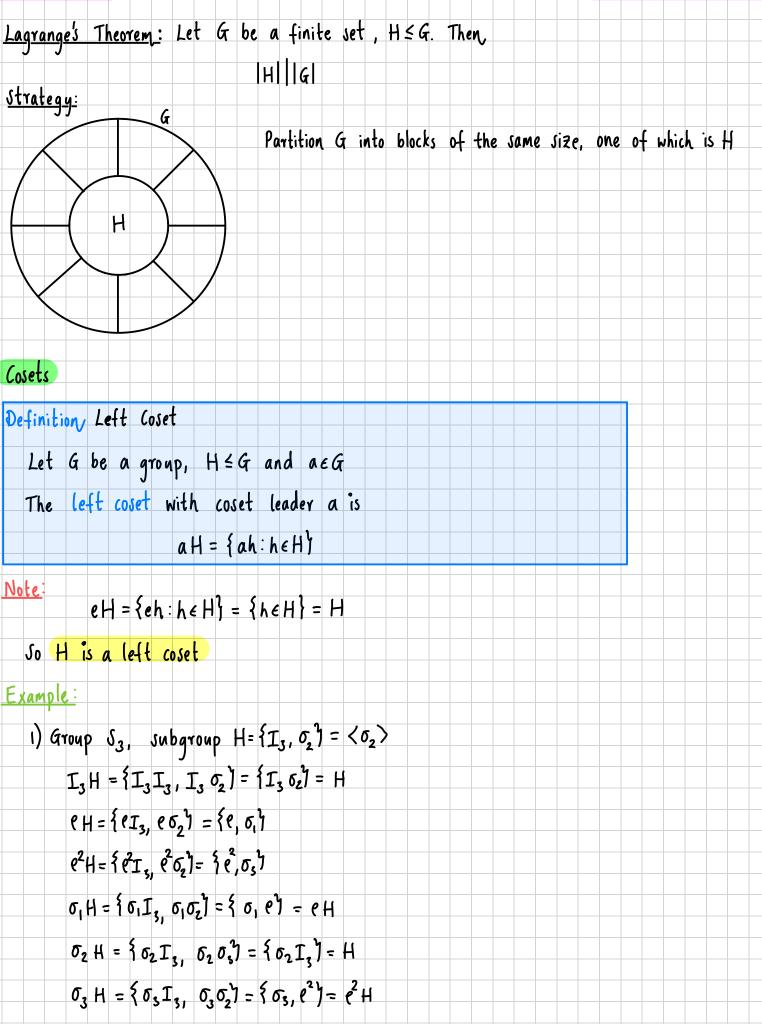
In is even 
$$\Longrightarrow$$
 In  $\in$  An  
Let  $\alpha, \beta \in A_n$ . Then,  $\alpha, \beta$  are even. From the table  
 $\alpha, \beta \in A_n \implies \alpha \beta$  is even.  
 $\Longrightarrow \alpha \beta \in A_n$   
Still with  $\alpha \in A_n$ , write  $\alpha = \mu_1 \cdots \mu_r$  where  $\mu_i$  are transpositions and r is even  
Then  $\alpha^{-1} = (\mu_1 \mu_2 \cdots \mu_r)^{-1} = (\mu_r^{-1} \mu_r^{-1} \cdots \mu_2^{-1} \mu_1^{-1}) = \mu_r \mu_{r-1} \cdots \mu_2 \mu_r$ , is a product of even,  
transpositions

d<sup>-1</sup>€ An An ≤ Sn Therefore

Note:

$$A_3 = \{I_3, e, e^2\} = \langle p \rangle$$
 and  $|A_3| = 3 = \frac{6}{2} = \frac{3}{2}$ 

# Cosets and Lagrange's Theorem



(a) Coset leader NOT unique:  $I_3H = \sigma_2H = H$  $\sigma_1 H = e H$  $\sigma_3 H = e^2 H$ (b) Distinct cosets are disjoint (c) Cosets have the same size  $|\mathbf{n}\mathbf{H}| = 2 = |\mathbf{H}| \quad \forall \mathbf{n} \in S_3$ (d) S<sub>3</sub>=HUeHUeH Example: Group (R\*, X), subgroup (R<sup>+</sup>, X)  $r R^{+} = \{rs: s \in R^{+}\} = \{rs: s > 0\} = \{R^{-}, i \in R^{+}\}$ r>0 r<0 where IR = {relR:r<0} Let r > 0 Then r > 0 for all s > 0; if h > 0, then  $h = r h \in r \mathbb{R} \implies r \mathbb{R}^+ = \mathbb{R}^+$ Similarly for r<0 Notice : (a) Coset leaders are NOT unique:  $1R^+ = 2R^+$ , etc (b) Distinct cosets are disjoint (c) Cosets have the same size:  $\exists$  bijection  $\mathbb{R}^+ \longrightarrow \mathbb{R}^-$ ;  $x \longmapsto x$ ; 

Lemma The coset lemma  
Let H 
$$\leq G$$
 where G is a group  
Define relation  $\sim_{H}$  on G by the rule:  
 $a \sim_{H} b \iff b'a \in H$   
Then  $\sim_{H}$  is an equivalence relation on G and  
 $[a] = aH$   
proof:  
Reflexive:  $a'a = e \in H$  so  $a \sim_{H} a$   
Symmetry: Suppose that  $a \sim_{H} b$ . Jo  $b'a \in H$ . Then,  
 $(b'a) \in H$  as  $H \leq G$ .  
Hence  $a'(b')' = a''b \in H \implies b \sim_{H} a$  closure under inverse  
Transitivity: Suppose a, b, c  $\in H$  and  $a \sim_{H} b \sim_{H} c$   $\implies b'a \in H$ ,  $c'b \in H$   
 $\implies c'a \in H$   
Hence  $\sim_{H}$  is an equivalence relation.  
We have  $[a] = \{b \in G: b \sim_{H} a\}$   
 $= \{b \in G: a'b \in H'\}$   
 $= \{b \in G: a'b \in H'\}$   
 $= a H$   
Reprinder: For any equivalence relations we have.

 $a \sim b \iff [a] = [b] \iff b \in [a]$  $\iff a \in [b]$ 

Let 
$$H \leq G$$
 where G is a group and let  $a, b, c \in G$   
i)  $a \in aH$   
2)  $c \in aH \iff cH = aH$   
3)  $aH = bH \iff aH \cap bH \neq \phi$   
4)  $aH = bH \iff b^{-1}a \in H$   
5)  $aH = H \iff a \in H$   
Proof:  
(1)  $a \in [a] = aH$  as  $a \sim_{H} a$   
(2)  $c \in aH = [a] \iff cH = [c] = [a] = aH$   
(3) Equivalence classes partition, a set  
(3) Equivalence classes partition a set

(1) 
$$a \in [a] = aH$$
 as  $a \sim_{H} a$   
(2)  $c \in aH = [a] \iff cH = [c] = [a] = aH$   
(3) Equivalence classes partition, a set  
(4)  $aH = bH \iff [a] = [b]$   
 $\Leftrightarrow a \sim_{H} b$   
 $\Leftrightarrow b^{\dagger}a \in H$   
(5)  $aH = H \iff aH = eH$   
 $\iff e^{\dagger}a \in H$   
 $\iff a \in H$ 

Lemma

|aH| = |bH| = |H|

proof: Define function

λ<sub>b</sub>(b) = bh

<u>Onto</u>: Clearly  $\lambda_b$  is onto since if  $bh \in bH$ ,  $bh = \lambda_b(h)$  <u>One-to-One:</u>

If  $\lambda_b(h) = \lambda_b(k) \implies bh = bk$  left cancelation.

Hence 
$$\lambda_h$$
 is a bijection  $\implies$  |H| = |bH|

Definition Index

If 
$$H \leq G$$
 then  $\lfloor G : H \rfloor$  is the number of left cosets of H in G

[G:H] is the index of H in G

Lagrange's Theorem

Theorem Lagrange's Theorem

Let G be finite group and H≤G. Then, the order of H divides order of G

Moreover

 $\frac{|\mathsf{G}|}{|\mathsf{H}|} = [\mathsf{G}:\mathsf{H}]$ 

<u>**Proof**</u>: Let k = [G:H] and  $a_1 H = H$ ,  $a_2 H$ , ...,  $a_k H$  be distinct left cosets of H in G

| By | lemma | above |      |   |   |    |   |      |  |
|----|-------|-------|------|---|---|----|---|------|--|
| J  |       |       | la:H | = | Н | ŀ, | 1 | ≤i≤K |  |

and

For any  $g \in G$ , we have  $g \in gH$ . Hence

$$G = H \dot{U} a_2 H \dot{U} \cdots \dot{U} a_k H$$

and then

 $G = H + a_2 H + a_3 H + \cdots + a_k H$ 

= | H| + .... + | H| (K terms)

= K H

So |H| |G| and <u>|G|</u> = K = [G:H]

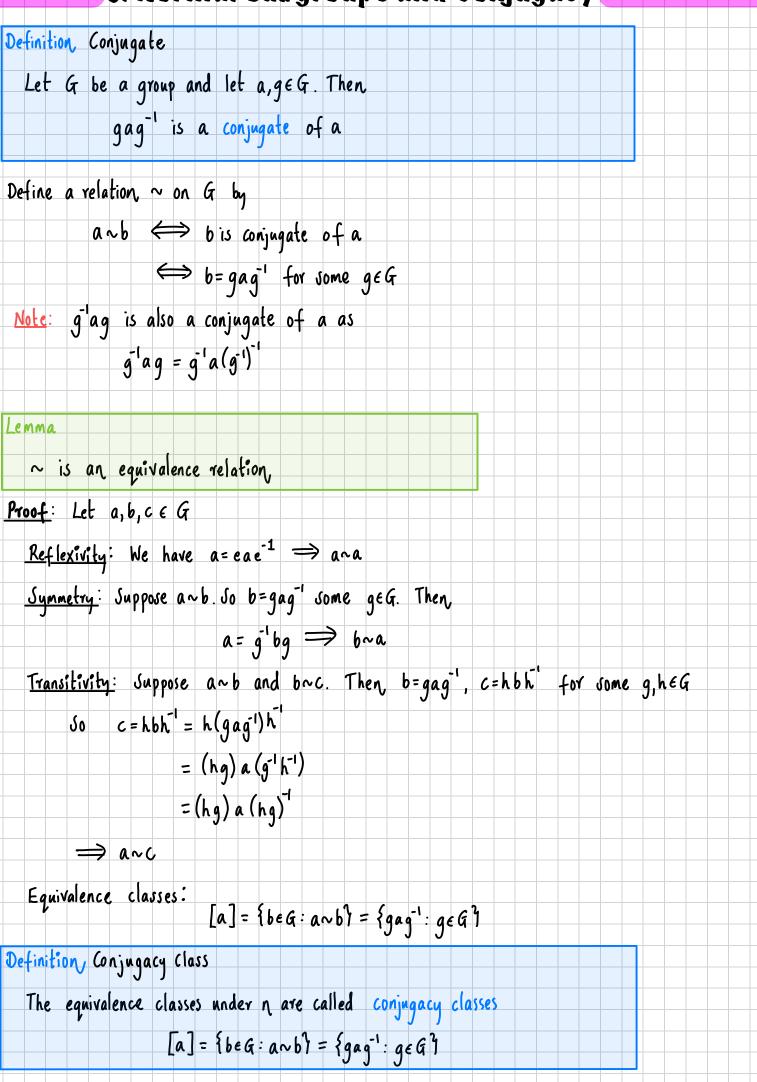
| No   | te: We could also have used right cosets                                                        |
|------|-------------------------------------------------------------------------------------------------|
|      | inition, Right Coset                                                                            |
|      |                                                                                                 |
|      | Let G be a group, $H \leq G$ and $a \in G$                                                      |
| 1    | The right coset with coset leader a is                                                          |
|      | $Ha = \{ha: h \in H\}$                                                                          |
| •    | The dual argument leads to Lagrange's Theorem                                                   |
|      |                                                                                                 |
|      | Consequently: if G is a finite group and H≤G then.                                              |
|      | number of left cosets = number of right cosets of H in G Exercises                              |
| Ap   | plication of Lagrange's Theorem                                                                 |
| G    | is a group, a $\in$ G                                                                           |
|      | $\langle a \rangle = \{a^{\kappa} : \kappa \in \mathbb{Z}\}$                                    |
| •    |                                                                                                 |
|      | the cyclic subgroup generated by a                                                              |
| H    | G is finite then, o(a) is finite and if o(a)=n, then                                            |
|      | $n =  \langle a \rangle $ and $\langle a \rangle = \{e_1 a_1 a_1^2, \dots, a^{n-1}\}$           |
| Coro | ollary Order Corollary                                                                          |
|      |                                                                                                 |
|      | Let G be a finite group and let a EG                                                            |
|      | Then, o(a) divides G                                                                            |
| Pro  |                                                                                                 |
|      | We have <a> =0(a) and <a>  G  by Lagrangés Theorem</a></a>                                      |
|      | sequently a <sup>IGI</sup> = e from remainder lemma.                                            |
|      |                                                                                                 |
|      | ollary                                                                                          |
|      | Let IGI=p where p is prime. Then, G is cyclic and generated by any of its non-identity elements |
|      |                                                                                                 |
| •    | $bof:$ Let $ G  = p$ where p is prime. Let $a \in G$ and $a \neq e$                             |
|      | Since $o(a)$ G and $o(a) \neq 1$ , we have $o(a) = p$                                           |
|      | So   <a>  = 0(a) = p =  G . Hence G = <a></a></a>                                               |
|      |                                                                                                 |

Let 
$$n \ge 2$$
. Then  $A_n = \frac{n}{2}$ .

Proof: Recall 
$$A_n = \{ \forall \in S_n : \forall \text{ is even} \}$$
  
Let  $O_n = \{ \forall \in S_n : \forall \text{ is odd} \} = S_n \setminus A_n$   
So  $S_n = A_n \cup O_n$  (disjoint union)  $\implies |S_n| = |A_n| + |O|_n$   
Claim:  $O_n = (12)A_n$   
We have  $(12)A_n = \{(12)d : d \in A_n\} \in O_n$   
 $O_n = \{(12)(12)_{B}: \beta \in O_n\}$   $(11)(12) = T_n$   
 $\in (12)A_n$   
Hence  $(12)A_n \leq O_n$   
By lemma above  
 $|A_n| = |(12)A_n| = |O_n| \implies |S_n| = |A_n| + |O_n|$   
 $\implies |S_n| = n! = 2|A_n|$   
 $\implies |S_n| = n! = 2|A_n|$   
 $\implies |A_n| = \frac{n!}{2}$   
Theorem, Fermat's Little Theorem.  
Let p be prime and  $a \in \mathbb{Z}$ . Then,  
 $a \equiv a^P (mod p)$   
Proof:  
If  $a \equiv O (mod p)$  then, result is clear  
If  $a \equiv O (mod p)$  then,  $[a] \in \mathbb{Z}_p^*$   
 $|\mathbb{Z}|_p = p-1$  so  $[a]^{P^-1} = [1] \implies [a^{P-1}] = [1]$ 

Hence a<sup>p</sup>=a(modp)

# 5. Normal Subgroups and Conjugacy



1) If G is commutative and a~b, then,  

$$b = gag' = agg'' = ae = a$$
  
So ~ is an equality helation,  
2) Let A, P G G L (n, R). Then,  
 $det(PAY') = det P det A det P''$   
 $= (det P)(det P'')(det A)$   
 $= det(PAY') det (A)$   
 $= det(PY') det(A)$   
 $= det T^* det A$   
Hence if A G S L (n, R), then, if A~B, then, B G O L (n, R)  
3) In S<sub>G</sub> with,  $g=(i2)(354) \implies p'' = (i2)(345)$   
Let  $\alpha = (125)$   
Then,  
 $g' \alpha p = (i2)(354)(i25)(i2)(345)$   
 $= (142) = (214)$   
 $= (\beta(i) \beta(2) \beta(5))$   
4) Let  $\alpha = (a_1 \dots a_R) \in S_n$ . Let  $Y \in S_n$ .  
We claim:  $TaT'' = (T(a_1) T(a_2) \dots T(a_K))$   
 $proof: Suppose x = T(a_1) 1 \le i \le K$   
Then,  $(TaT'')(x) = TaT'Y(a_1) = Ta(a_1) = Ta(a_1) = Ta(a_1)$   
 $f x g \{T(a_1), \dots, T(a_K)\}$  then,  $T'(x) \notin \{a_1, \dots, a_n\}$   
Then,  $TaT'' = (Y(a_1) \dots Y(a_K))$   
 $hen, TaT''(x) = YT''(x) = x$  as at leaves  $T''(x)$  fixed and  
 $(T(a_1) \dots T(a_K))(x) = x$ .  
So  $TaT'' = (Y(a_1) \dots Y(a_K))$ 

Example  

$$\alpha = (13)(26) : (ycle type is [2,2])$$

$$\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ (4 & 3 & 2 & 5 & 1 & 7 & 8 & 6 \end{pmatrix} = (1 & 4 & 5)(2 & 3)(6 & 7 & 9)$$

$$(ycle type: [3,3_1 & 2])$$
Theorem,  
Let  $d_1 p \in S_n$ . Then,  
 $d \sim p \iff \alpha$  and  $p$  have the same cycle type.  
Proof:  
If  $\alpha \in T_1 T_2 \cdots T_k \iff cycle$  decomposition, length of  $T_1$  is  $l_1$   
Then,  $\delta^{-1}\alpha \delta = \delta Y_1 \cdots Y_k \delta^{-1} = \delta Y_1 T_n Y_2 T_n \cdots T_n Y_k \delta^{-1}$   
 $= (\delta T_1 S^{-1}) (\delta T_2 S^{-1}) \cdots (\delta T_k S^{-1})$   
We have  $\delta T_1 \delta^{-1}$  is a cycle of  $l_1$   
More over  $1f = T_k = (x_{2,1}^k, \dots, x_{k,k}^k)$ , then  
 $\delta T_1 \delta^{-1} = (\delta(x_{2,1}^k), \dots, \delta(x_{k,l}^k))$  and  $\delta T_2 \delta^{-1} = (\delta(x_{2,1}^k), \dots, \delta(x_{k,k}^k))$   
These cycles must be disjoint, for if  
 $\delta(x_{1,k}^k) = \delta(x_{2,k}^{k}) \implies x_{1,k}^k = x_{2,k}^k$  by definition of bijection.  
Hence  $p = \delta \alpha \delta^{-1}$  and  $\alpha$  have the same cycle type  
The converse is also true. Suppose that  
 $\beta = M_1 \cdots M_n$   
is a disjoint decomposition of  $p$  with the same cycle type as  $x_1$ , so that the length of  
 $M_1$  is  $l_1$  for  $1 \leq 1 \leq m$ .  
Write  
 $M_k = (y_k^k \cdots y_{k,k}^k)$ .

$$\left\{ x_{1}^{1}, \dots, x_{l_{1}}^{1}, \dots, x_{l_{m}}^{n} \right\} = \left\{ y_{1}^{2}, \dots, y_{l_{1}}^{1}, \dots, y_{l_{m}}^{n} \right\}$$
$$= l_{1} + \dots + l_{m}$$

Let 
$$\Theta: (\{1, ..., n\} \setminus \{x_1^1, ..., x_{\ell_1}^1, ..., x_{\ell_n}^n, ..., x_{\ell_n}^n\})$$
  
 $\rightarrow (\{1, ..., n\} \setminus \{y_1^1, ..., y_{\ell_1}^1, ..., y_{\ell_n}^n\})$  be a bijection.  
Define  $\delta \in S_n$  by  
 $\delta(x_j^i) = y_j^i$   
and for  $2 \notin \{x_1', ..., x_{\ell_1}^1, ..., x_1^n, ..., x_{\ell_n}^n\}$   
 $\delta(z) = \Theta(z)$   
Then  
 $\delta d \delta^{-1} = \delta \gamma_1 ..., \gamma_m \delta^{-1}$   
 $= (\delta \gamma_1 \delta^{-1}) ..... (\delta \gamma_m \delta^{-1}) = M_1 ..., M_m$   
 $= \beta$   
Example:  
Let  $\chi = \{I_{4, 1}(12)(34), (13)(24), (14)(23)\}$   
 $\chi \leq A_4$  as every element of  $\chi$  is self inverse,  $I_4 \in K$   
 $(a b)(cd)(a c)(b d) = (a d)(b c)$   
 $\Longrightarrow$  Multiplication, is closed on  $\chi$  and  $K \leq A_4$   
 $\Gamma_1 \sqcup_m = i (a h)(c l) \in \chi$  then for  $\chi$  is  $\chi \in G$ 

ther, if 
$$(ab)(cd) \tilde{\tau}^{\dagger} = \tilde{\tau}(ab) \tilde{\tau}^{\dagger} \tau(cd)$$
  
=  $(\tau(a) \tau(b))(\tau(c) \tau(d)) \in \mathcal{X}$ 

#### Theorem

$$A_4$$
 has no order 6 subgroup  
We have  $|A_4| = \frac{4!}{2} = 12$ 

Elements of cycle type [2] are of form (a b) even. Elements of cycle type [4] are of form (a b c d) = (a d)(a c)(a b) odd Elements of cycle type [2,2] are of form (a b)(cd) even.

Elements of cycle type [2] are of form 
$$(a b c) = (a c)(a b)$$
 even  
So the elements of A<sub>4</sub> are:  $\{I_4, (12)(34), (13)(24), (14)(23), (123), (132), \}$   
 $(124), (142), (134), (143), (234), (243)$ 

So suppose  $H \le A_4$ , |H| = 6. If H contains 2 elements of type [2,2], it must contain, the third as

$$(ab)(cd)(ac)(bd) = (ad)(cb)$$
 closur

Also all elements of [2,2] type are self inverse. Hence

 $K = \{I_4, (12)(34), (13)(24), (14)(23)\} \leq H$  contradicting Lagrange's Theorem.

as 476, [K] / [H]

If  $(12)(34) \in H$  and  $\alpha = (abc) \in H$ , then

$$\alpha(12)(34)\alpha^{-1} \in H \implies (\alpha(1)\alpha(2))(\alpha(3)\alpha(4)) \in H$$

Can only have one [2,2] element. To avoid contradiction, we have

$$(12)(34) = (a(1)a(2))(a(3)a(4))$$

We could have

$$(12) = (\alpha(1) \alpha(2))$$
  $(34) = (\alpha(3) \alpha(4))$  - contradiction,

٥Y

(12) = (d(3) d(4)) and (34) = (d(1) d(2)) - contradiction

So H consists entirely of identity and 3-cycles. But 3 cycles come in pairs

 $\Rightarrow$  contradiction

Hence no such H exists.

### Normal Subgroups

Definition, Normal Jubgroup

Let G be a group and H≤G.

Then H is a normal subgroup of G denoted H=G if

VgEG VhEH, ghg<sup>-1</sup>EH closed under conjugation

i.e. H is a union of conjugacy classes

### Example:

(1) H = G where G is commutative. Therefore for any  $g \in G$ ,  $h \in H$ , ghg<sup>-1</sup> = hgg<sup>-1</sup> = h. So H⊴G 2) We always have  $\{e\} \triangleleft G$ ,  $G \triangleleft G$  since  $geg^{-1} = e$ 3) For deSn and BeAn  $sg(\alpha \beta \alpha^{+1}) = sg(\alpha) sg(\beta) sg(\alpha^{-1})$  $= sq(d) sq(d^{-1})$  $= Sg(\alpha \alpha^{-1})$ = sg(In)=1  $\implies \alpha \beta \alpha^{-1} \in A_n$  and  $A_n \triangleleft S_n$ 4) Let  $H = \{I_3, \sigma_2\}$  $(\sigma_{2}e^{-1} = (\sigma_{2}e^{2} = \sigma_{3} \notin H. S_{0} H \notin S_{3})$ 5)  $SL(n, \mathbb{R}) \leq GL(n, \mathbb{R})$ If  $A \in SL(n, \mathbb{R})$  and  $P \in GL(n, \mathbb{R})$  then  $det(A) = det(PAP^{-1})$ , we have  $P^{-1}AP \in SL(n, \mathbb{R})$ So  $SL(n, \mathbb{R}) \trianglelefteq GL(n, \mathbb{R})$ 

# Simple Groups

Definition

A group G is simple if {e} and G are the only normal subgroup of G

# Proposition

$$A_4$$
 is not simple

Proof: We have shown

K ⊴ A<sub>4</sub>

# 6. Homomorphisms

## Homomorphisms and isomorphisms

θ:G → H

be a map.

i) 
$$\Theta$$
 is a (group) homomorphism, if  $\forall a, b \in G$ ,  
 $\Theta(a \circ b) = \Theta(a) * \Theta(b)$ 

ii)  $\Theta$  is an isomorphism if  $\Theta$  is a homomorphism, and  $\Theta$  is a bijection.

### Examples:

$$\Theta(e) - f$$

is a homomorphism, since only products in. G are

$$ee = e$$
 and  $\Theta(ee) = \Theta(e) = f = ff = \Theta(e) \Theta(e)$ 

ii) 
$$d:T = \{1, -1\} \longrightarrow \{I_3, \sigma_i\}$$
 given by  
 $\alpha(1) = I_3 \qquad \alpha(-1) = \sigma_1$ 

proof: Clearly 
$$\alpha$$
 is a bijection. We have  
 $\alpha(1 \cdot 1) = \alpha(1) = I_3 = I_3I_3 = \alpha(1)\alpha(1)$   
 $\alpha((-1) 1) = \alpha(-1) = \sigma_1 = I_3\sigma_1 = \alpha(1)\alpha(-1)$ 

$$d((-1)(-1)) = a(1) = T_{3} = \sigma_{1}\sigma_{1} = d(-1)a(-1)$$
Hence a is an isomorphism.  
(3)  $\Theta: \mathbb{R} \rightarrow \mathbb{R}^{*}$  given, by  
 $\Theta(x) = e^{x}$   
is a homomorphism since  
 $\forall x_{1}y \quad \Theta(x + y) = e^{x+y} = e^{x}y = \Theta(x)\Theta(y)$   
 $\Theta$  is not onto since  $\operatorname{Im}\Theta = \mathbb{R}^{+} \implies$  not an, isomorphism  
 $\Theta: \mathbb{R} \rightarrow \mathbb{R}^{+}$  is a bijection  $\implies$  isomorphism  
 $det(AB) = detA detB$   
Note: det is not an isomorphism for  $n \ge 2$   
 $ex:$   $det \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 2 = det \begin{pmatrix} 2 & 1 & 0 \\ 0 & 1 \end{pmatrix}$  (not 1-1)  
 $0 = 0(a) = 1$ ,  $\Theta(b) = \Theta(c) = -1$   
is a homomorphism,  
 $pAoofic:$   
 $1) \Theta(ae) = \Theta(a) = 1 = 1 \cdot 1 = \Theta(a) \Theta(e)$ . Similar for  $ea \in K$ 

#### Lemma

$$\Theta: G \longrightarrow H$$
 is a homomorphism. Then,  $\forall g \in G, z \in \mathbb{Z}$   
i)  $\Theta(e_G) = e_H$   
ii)  $\Theta(g^{-1}) = \Theta(g)^{-1}$   
iii)  $\Theta(g^2) = \Theta(g)^2$ 

<u>Proof</u>:

1) 
$$\Theta(e_q) = \Theta(e_q e_q)$$
  
 $= \Theta(e_q) \Theta(e_q) = \Theta(e_q) \Theta(e_q)$  is a homomorphism,  
 $\implies e_H \Theta(e_q) = \Theta(e_q) \Theta(e_q)$  since  $e_H \Theta(e_q) = \Theta(e_q)$   
 $\implies e_H = \Theta(e_q)$  by right cancellation. In. H  
The only idempotent element (element that squares to itself) is the group identity)  
ii) We have  $e_H = \Theta(e_g) = \Theta(g g^{-1}) = \Theta(g^{-1}g)$   $\forall g \in G$   
So  $e_H = \Theta(q) \Theta(g^{-1}) = \Theta(g^{-1}) \Theta(q)$  as  $\Theta$  is a homomorphism  
 $\implies \Theta(g^{-1}) = (\Theta(g))^{-1}$   
iii)  $\Theta(g^o) = \Theta(e_q) = e_H = \Theta(q)^o$  by (1)  
For any  $n \in \mathbb{N}$   
 $\Theta(g^{-n}) = \Theta((g^{-1})^n) = (\Theta(g^{-1}))^n$   
 $= (\Theta(q)^{-1})^n$  by ii  
 $= \Theta(q)^{-n}$ 

Definition, Isomorphic A group G is isomorphic to a group H if  $\exists$  an isomorphism,  $\Theta: G \longrightarrow H$ . We write  $G \cong H$ 

#### Lemma

If G1 H and K are groups then, i)  $I_G: G \rightarrow G$  is an isomorphism, ii) If  $O: G \rightarrow H$  is an isomorphism, then,  $O^{-1}: H \rightarrow G$  is also an isomorphism, iii) If  $O: G \rightarrow H$ ,  $Y: H \rightarrow K$  are isomorphisms, then,  $YO: G \rightarrow K$  is an isomorphism Proof: i)  $I_G: G \rightarrow G$  is a bijection. For any  $a, b \in G$ ,  $I_G(ab) = I_G(a) I_G(b)$ 

So IG is a homomorphism,  $\Rightarrow$  hence an isomorphism.

ii) 
$$\Theta, \Theta''$$
 are mutually inverse. So  $\Theta'': H \rightarrow G$  is a bijection,

Let h, k e H. Since O is onto, 3 h', K' e G with

 $\Theta(h') = h$   $\Theta(k') = K$ 

Then,  $\Theta(h'k') = \Theta(h')\Theta(k') = hk$ 

So  $\theta^{-1}(h) \theta^{-1}(k) = h' k' = \theta^{-1}(h k) \implies \theta^{-1}$  is an isomorphism.

 $\Longrightarrow$   $H \cong G$ 

iii) For any g, hEG,

- $(\psi \theta)(gh) = \psi(\theta(gh))$ =  $\psi(\theta(g)\theta(h))$  $G \xrightarrow{\theta} H \xrightarrow{\psi} K$ 
  - = ψ(θ(q))ψ(θ(h))
  - = (40)(g) (40)(h)

=> composition, of homomorphism is a homomorphism,

Composition, of bijection is a bijection  $\implies \psi \Theta$  is a bijection,

🔿 γθ is a isomorphism.

Corollary The relation  $\cong$  (isomorphic) is an equivalence relation on the class of all groups proof: Let G, H, K be groups. Reflexive: By i) of previous lemma,  $I_G: G \rightarrow G$  is an isomorphism  $\Longrightarrow G \cong G$ Jymmetry: If  $G \cong H$ ,  $\exists$  an isomorphism,  $\Theta: G \rightarrow H$ Then, by (ii) by lemma,  $\Theta^{-1}: H \rightarrow G$  is also an isomorphism,  $\Longrightarrow H \cong G$ Transitivity:  $G \cong H$  and  $H \cong K \implies \exists \Theta: G \rightarrow H$  and  $\Psi: H \rightarrow K$  such that  $\Theta$  and  $\Psi$  are isomorphism.

$$\Rightarrow \psi \Theta: G \rightarrow K \text{ is an isomorphism, by ii}$$

 $\rightarrow$ 

# Properties shared by isomorphic groups

2) G is commutative 
$$\iff$$
 H is commutative

3) Let 
$$a \in G$$
. Then  $o(a) = o(\alpha(a))$ 

#### Proof:

Let 
$$a, b \in H$$
. Since  $\alpha$  is onto,  $\exists a', b' \in G$  such that

 $\alpha(a')=a$   $\alpha(b')=b$ 

Then, 
$$ab = \alpha(a)\alpha(b) = \alpha(a'b')$$
  
 $= \alpha(b'a')$   
 $= \alpha(b')\alpha(a')$   
 $= ba$   
 $\Rightarrow$  H is commutative.  
For converse, if H is commutative, then use the fact  
 $\alpha^{-1}$ :  $H \rightarrow G$   
is an isomorphism  
3)  $a^n = e_q \iff \alpha(a^n) = \alpha(e_q)$  as  $\alpha$  is 1-1  
 $\iff \alpha(a)^n = e_H$   
4) If G is cyclic,  $G = \langle a \rangle = \{a^2 : 2eZ\}$   
Then,  $H = \{\alpha(a^n) : 2eZ\}$  since  $H = \alpha(\Theta)$   
 $\delta_0$   $H = \{\alpha(a^n) : 2eZ\}$  since  $H = \alpha(\Theta)$   
 $\delta_0$   $H = \{\alpha(a^n) : 2eZ\}$  since  $H = \alpha(\Theta)$   
 $\delta_0$   $H = \{\alpha(a^n) : 2eZ\}$  since  $H = \alpha(\Theta)$   
 $\delta_0$   $H = \{\alpha(a^n) : 2eZ\}$  since  $H = \alpha(\Theta)$   
 $\delta_0$   $H = \{\alpha(a^n) : 2eZ\}$  since  $H = \alpha(\Theta)$   
 $\delta_0$   $H = \{\alpha(a^n) : 2eZ\}$  since  $H = \alpha(\Theta)$   
 $\delta_0$   $H = \{\alpha(a^n) : 2eZ\}$  since  $H = \alpha(\Theta)$   
 $\delta_0$   $H = \{\alpha(a^n) : 2eZ\}$  is also an isomorphism  
**b**  
**b**  
**b**  
 $\delta_0$   $H = \{\alpha(a^n) : 2eZ\}$  is also an isomorphism  
**b**  
 $\Phi = \{A = \{A = A\}$  and  $H = \{A\}$  are cyclic groups of order n, then  $G \cong H$   
 $\Phi = \{A = \{A\}\}$  and  $H = \langle A \rangle$  are cyclic groups of order n, then  $G \cong H$ 

Define 
$$\alpha: G \rightarrow H$$
 by  $\alpha(a') = b'$ 

We have 
$$a' = a' \iff i \equiv j \pmod{n}$$
  
 $\iff b' = b'$ 

$$\iff_{\alpha}(a') = \alpha(a')$$
 well defined

clearly x is onto (b'=x(ai))

For any a', a', we have 
$$\alpha(a'a') = \alpha(a''k')$$

$$= b^{i+k} = b^{i}b^{k} = \alpha(a^{i})\alpha(a^{k})$$

Hence & is an isomorphic

To show GZH, not isomorphic, we must find a property preserved by isomorphisms that one group has but the other does not

#### Example

(1) 
$$R \neq J_{\Lambda}$$
 as R is infinite,  $|J_{\Lambda}| = n! < \infty$ 

(2) 
$$S_n \neq S_m$$
 if  $n \neq m$  as  $|S_n| = n! \neq m! = |S_m|$ 

(3) 
$$S_3 \neq \mathbb{Z}_6$$
 as  $S_3$  not commutative but  $\mathbb{Z}_6$  is

(4) 
$$K \cong \mathbb{Z}_4$$
 as K is not cyclic but  $\mathbb{Z}_4$  is

(5) 
$$\mathbb{R}^* \not\cong \mathbb{R}^+$$
 as  $\mathbb{R}^*$  has an element of order 2 (namely -1  $\in \mathbb{R}$ ) but  $\mathbb{R}^+$  does not

.2

(6) 
$$\mathbb{R}^+ \not\equiv \mathbb{Q}^+$$
 as for all re $\mathbb{R}^+$ ,  $\exists \exists \forall e \in \mathbb{R}^+$  and  $(\exists \forall f) = r$ 

But 
$$\Im q \in Q^T$$
 with  $q^2 = 2$ 

### Automorphisms and inner automorphism,

An automorphism of G is an isomorphism 
$$G \rightarrow G$$
.

### Proposition

proof: We show Aut(G)≤S<sub>G</sub>

<u>Identity</u>: We know I<sub>G</sub> E Aut(G)

<u>Closure</u>: If  $0, \psi \in Aut(G)$ , then,  $0, \psi$  are isomorphism.

⇒ O¥e Aut(G)

$$\implies 0^{-}\epsilon \operatorname{Aut}(G)$$

## Proposition

 $\psi_a \in Aut(G)$ 

Proof:

homomorphism: 
$$\Psi_a(gh) = agha^{-1} = ageha^{-1} = (a ga^{-1})(aha^{-1}) = \Psi_a(g)\Psi_a(h)$$
  
one-to-one:  $\Psi_a(g) = \Psi_a(h) \implies aga^{-1} = aha^{-1}$   
 $\implies g = h$  by cancellation,  
onto: For any aff, we have

$$\psi_{a}(a^{1}ga) = a(a^{1}ga)a^{1} = (aa^{1})g(aa^{1}) = ege = g$$

**Definition**, Set of all inner automorphisms  
The set 
$$Inn(G) = \{ \gamma_a : a \in G \}$$
 is the set of all inner automorphism, of G

<u>Remark</u> If G is commutative, then for any Ya

$$\Psi_{a}(g) = aga^{-} = gaa^{-} = g = I_{G}(g)$$
  
$$\Psi_{a} = I_{g} \implies Inn(G) = \{I_{G}\}$$

Example:

so that

For 
$$d \in S_n$$
  
 $\Psi_{\alpha}(a_1 a_2 \cdots a_m) = d(a_1 \cdots a_m) d^{-1} = (d(a_1) d(a_2) \cdots d(a_m))$ 

then if  $\beta = \gamma_1 \gamma_2 \cdots \gamma_K$  is a cycle decomposition, then

Proof:  
1) True since d is an onto function  
2) Suppose G is commutative. Let 
$$a, b \in H$$
. Since a is onto,  $\exists a', b' \in G$  such that  
 $a(a') = a$ ,  $a(b') = b$ .  
Then  
 $ab = d(a')d(b') = d(a'b') = a(b'a) = d(b')a(a') = ba$ .  
G commutative  
3)  $O(a) = n \implies a' = e_{G}$   
 $\implies d(a') = d(e_{G})$   
 $\implies d(a') = d(e_{G})$   
 $\implies d(a') = e_{A}$   
 $\implies o(d(a)) \mid n$   
4) G is cyclic  $\implies \exists a \in G$  s.l  
 $G = \langle a \rangle = \{a^{2} : 2 \in \mathbb{Z}\}$  onto  
 $= \{(a(a))^{2} : 2 \in \mathbb{Z}\} = \{b^{2} : 2 \in \mathbb{Z}\}^{2}$   
Then  
 $H = Im(d) = \{d(a^{2}) : 2 \in \mathbb{Z}\} = \{b^{2} : 2 \in \mathbb{Z}\}^{2}$   
uhere  $b = a(a) \implies H$  is cyclic.

# 7. Quotients Groups and the Fundamental Theorem of Homomorphisms Kernels and Images Definition, Images and Kernels

Let G, H be groups and let 
$$\Theta: G \rightarrow H$$
 be a homomorphism

kernel of 
$$\Theta$$
: ker $(\Theta) = \{g \in G : \Theta(g) = e\}$ 

Image of 
$$0$$
:  $Im(0)$ :  $\{O(g): g \in G\}$ 

InO is the homomorphic image of G

ker0≤G and In0≤H

### Example:

1) 
$$\Theta: GL(2, \mathbb{R}) \rightarrow \mathbb{R}^{*}$$
 given, by  
 $\Theta(A) = det A.$  Then.  
i)  $\Theta$  is a homomorphism  
ii)  $\Theta$  is a homomorphism  
iii) In  $\Theta = SL(2, \mathbb{R})$   
iii) In  $\Theta = \mathbb{R}^{*} \implies \Theta$  is onto  
proof:  
1) homomorphism: Let A, B  $\in GL(2, \mathbb{R})$   
 $\Theta(AB) = det(AB) = det(A) det(B) = \Theta(a)\Theta(b)$   
ii)  $A \in ker(\Theta) \iff \Theta(A) = 1$   
 $\iff det(A) = 1$   
 $\iff A \in SL(2, \mathbb{R})$   
Jo  $A \in ker\Theta$   
iii) Let  $r \in \mathbb{R}^{*}$ . Then,  $\exists (r \circ) \in GL(2, \mathbb{R})$  and

Lemma

Let G, H be groups, 
$$\Theta: G \longrightarrow H$$
 a homomorphisms. Then  
1)  $\Theta(a) = \Theta(b) \iff a^{-1}b \in \text{Ker}\,\Theta$   
2)  $\Theta$  is 1-1  $\iff$  Ker $(\Theta) = \{e_G\}$ 

proof:

1) We know from Lemma pg  

$$\Theta(a) = \Theta(b) \iff \Theta(a^{-1})\Theta(b) = \Theta(a^{-1})\Theta(b)$$
  
 $\iff \Theta(a^{-1}a) = \Theta(a^{-1}b)$   
 $\iff \Theta(e_G) = \Theta(e_H)$   
 $\iff e_H = \Theta(a^{-1}b)$   
 $\iff a^{-1}b \in \ker \Theta$ 

2) We know  $e_{G} \in Ker \Theta$ 

Suppose 
$$\theta$$
 is 1-1.  $\forall g \in \text{ker}\theta$ , we have  
 $\theta(g) = e_H = \theta(e_g) \implies g = e_G \quad (\theta \text{ is } 1-1)$   
 $\implies \text{ker}\theta = e_G$ 

Conversely suppose  $\ker \Theta = \{e_{G}\}$ Then,  $\Theta(a) = \Theta(b) \implies O(a^{'}b) = e_{H}$   $\implies a^{'}b \in \ker \Theta$   $\implies a^{'}b = e_{G}$  $\implies a = b$ 

Therefore  $\theta$  is 1-1

Let G and H be groups, let 
$$\Theta: G \rightarrow H$$
 be a homomorphism

proof:

We have from Lemma 6.3, that 
$$\Theta(e_G) = e_H$$
  
Ker  $\Theta$ :

Identity: So 
$$e_{G} \in \text{Ker}\Theta$$
 as  $\text{Ker}(\Theta) = \{g \in G : \Theta(g) = e_{H}\}$  and  $\Theta(e_{G}) = e_{H}$   
Closnre:  $a, b \in \text{Ker}\Theta$ . Then,  $\Theta(a)\Theta(b) = e_{H}e_{H} = e_{H}$   
Inverse:  $\Theta(a^{-1}) = (\Theta(a))^{-1} = e_{H}^{-1} = e_{H}$   
Conjugacy: Let  $g, h \in G$  h  $\in \text{Ker}\Theta$   
 $\Theta(ghg^{-1}) = \Theta(g)\Theta(h)\Theta(g^{-1})$   
 $= \Theta(g)e_{H}\Theta(g^{-1})$  as  $h \in \text{Ker}\Theta$   
 $= \Theta(g)\Theta(g^{-1})$   
 $= \Theta(g)\Theta(g^{-1})$ 

<u>Im0</u>:

$$\frac{\text{Identity}}{\text{Closure}} = e_{H} \in \text{Im} \Theta$$

$$\frac{\text{Closure}}{\text{So} = 2 \text{ Let } g, h \in \text{Im} \Theta = \{\Theta(k) : k \in G\}$$

$$\int o \exists a, b \in G \text{ with } g = \Theta(a) \text{ and } h = \Theta(a)$$

$$gh = \Theta(a)\Theta(b) = \Theta(ab) \in \text{Im}\Theta$$

$$\frac{\text{Inverse}}{\text{Inverse}} : g^{-1} = (\Theta(a))^{-1} = \Theta(a^{-1}) \in \text{Im}(\Theta)$$

Construction of Quotient Groups Let N≤G. We let G/N = {aN: aeG} Define product (aN)(bN) = abNmultiplication in G Lemma Well-Defined aN = cN and  $bN = dN \implies abN = cdN$  well defined proof: We have caeN and d beN Now  $(cd)^{-1}(ab) = d^{-1}c^{-1}ab = d^{-1}(bb^{-1})c^{-1}ab$  $= (d^{-1}b)(b^{-1}(c^{-1}a)b) = (d^{-1}b)(b^{-1}(c^{-1}a)(b^{-1})^{-1})$ EN εN εN  $\therefore$  (cd) abe N  $\implies$  ab N = cd N Proposition, Let N≤G. Then, G/N is a group under (aN)(bN) = abN

Identity: 
$$I_{G/N} = N = e N$$
  
Inverse:  $(aN)^{-1} = a^{-1}N \quad \forall a \in G$ 

<u>proof:</u>

<u>Identity:</u> VaNeG/N

$$aN \cdot N = aNeN = aeN = aN = eaN = eNaN$$

= NaN

$$\underline{Inverse}: (aN)(a^{-1}N) = aa^{-1}N = eN = N = a^{-1}aN = (a^{-1}N)(aN) \Longrightarrow (aN)^{-1} = (aN)$$

Definition, Quotient Groups  
G/N is the quotient group or factor group of G by N  
Example:  
det: GL(2,R) 
$$\rightarrow$$
 R\* is a homomorphism.  
Ker det = SL(2,R) = S. So  
 $S \leq G = GL(2,R)$   
Further for any A, B  $\in$  GL(2, R)  
AS = BS  $\iff$  B<sup>1</sup>A  $\in$  S cosets  
 $\iff$  det B<sup>1</sup>A = 1  
 $\iff$  det B = det A  
We have  
 $G'_S = \{AS : A \in G\}$  and  
 $(AS)(BS) = (AB)S$   
So it seems  $G'_S \cong R^*$   
Prepariton.  
Let N  $\leq G$ . Then,  
 $v_{N}: G \rightarrow G/N$   
 $v_{N}(g) = gN$   
is an onto homomorphism, with Kerv<sub>N</sub> = N  
probaf:  
homomorphism:  $\forall g, h \in G$ , we have  
 $v_{N}(gh) = ghN = gNhN = v_{N}(g)v_{M}(h)$   
Onto: Let  $gN \in G'_{AF}$ . Then,  $gN = v_{N}(g) = v_{M}$  is onto  
Finally  
 $n \in Kerv_{N} \iff v_{M}(h) = N \iff nN = N \iff nEN \dots$  Kerv\_N = N.

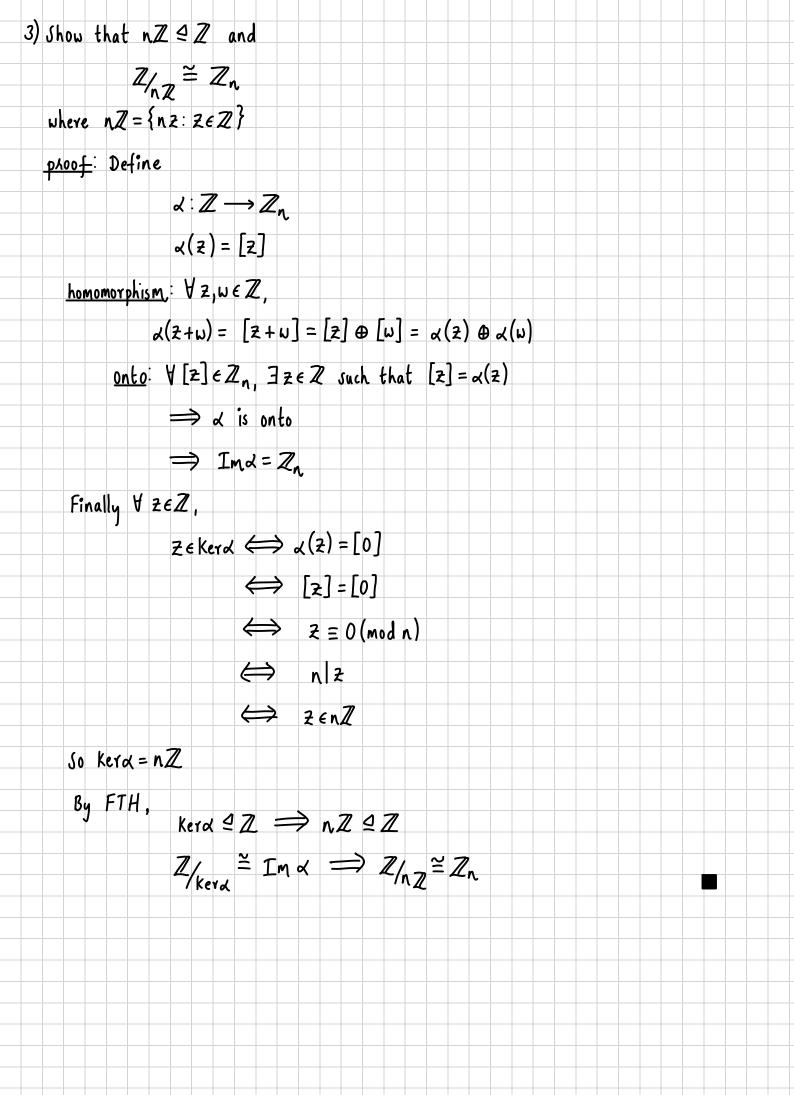
# Note G/N = ImVN

We now Know

{kernels of homomorphism} = {normal subgroups}  
{quotient groups} 
$$\leq$$
 {homomorphic groups}  
Theorem, Fundamental Theorem, of Homomorphisms (FTH)  
Let G and H be groups and let  $\Theta:G \rightarrow H$  be a homomorphism.  
Then, ker  $\Theta \cong G$ , Im  $\Theta \cong H$  and  $G/_{ker} \cong Im \Theta$   
proof: From, Lemma 7.4, we have  $ker \Theta \cong G$  and  $Im \Theta \cong H$   
Let N = ker  $\Theta$ . We want to show  $G/N \cong Im \Theta$   
Define  $\overline{\Theta}: G/N \rightarrow Im \Theta$  by  
 $\overline{\Theta}(a N) = \Theta(a)$   
1-1 and well-defined:  $\forall a N, bN \in G/N$   
 $aN = bN \iff b^{-1}a \in N$   
 $\iff \Theta(b^{-1}a) = e_H$  as  $N = ker \Theta$   
 $\iff \Theta(b)^{-1}\Theta(a) = e_H$   
 $\iff \Theta(a) = \Theta(b)$   
 $\implies \overline{\Theta}$  is well defined  
 $\iff \overline{\Theta}(aN) = \overline{\Theta}(bN)$   
 $\implies : \overline{\Theta}$  is well defined  
 $\iff \overline{\Theta}(a N) = \overline{\Theta}(b N)$   
 $\implies : \overline{\Theta}$  is well defined  
 $\iff (a N = \Theta(a) = \Theta(b)$   
 $\iff \Theta(a) = \Theta(b)$   
 $\implies : \overline{\Theta}$  is well defined  
 $\iff (a N = \overline{\Theta}(a N) = \overline{\Theta}(a b N)$   
 $= \Theta(a)\Theta(b)$   
 $= \Theta(a)\Theta(b)$   
 $= \overline{\Theta}(aN) \overline{\Theta}(bN)$ 

Example:  
We have det: 
$$GL(2, \mathbb{R}) \longrightarrow \mathbb{R}^{\#}$$
 is an onto homomorphism so in det =  $\mathbb{R}^{\#}$   
ker det =  $SL(2, \mathbb{R})$ ,  $S = SL(2, \mathbb{R})$   
Then by FTH,  $G/S \cong \mathbb{R}^{\#}$ ,  $\overline{det}(AS) = det(A)$   
Applications of FTH Examples  
1) Show that for any  $n \ge 2$ ,  
 $A_n \cong G_n$  and  $G_{n/A_n} \cong T$   
where  $T = \{1, -1\}$   
proof: Recall the sign function, sg  
 $Sg : S_n \longrightarrow T$   
 $Sg(\mathscr{A}) = \{1 \ x \text{ is even}$   
Ne drew a table  
 $Sg \ll Sg\beta Sg(\mathfrak{a}\beta)$   
1 1 1 1  
1 -1 -1 -1  
 $-1$  1 -1  
 $Clear from table,$   
 $Sg is a homomorphism.$   
Further  
 $\mathscr{A} \in Ker(sg) \iff Sg \mathfrak{a} = 1$   
 $\iff \mathfrak{a} \in A_n$ 

So 
$$A_n = \ker(s_g)$$
  
Onto We have  
 $1 = s_g(I_n)$  and  $-1 = s_g((1, 2))$   
 $\Rightarrow I_n(s_g) = \{1, \cdot 1\} = T$   
By FTH,  
 $\ker(s_g) = A_n \oplus S_n$   
 $S_n \bigvee_{x \in (s_g)} = I_n(s_g) \implies S_n \bigvee_{A_n} \cong T$   
 $S_n \bigvee_{x \in (s_g)} = I_n(s_g) \implies S_n \bigvee_{A_n} \cong T$   
2) Show that  $SL(n, \mathbb{R}) \oplus GL(n, \mathbb{R})$  and  
 $GL(n, \mathbb{R})/SL(n, \mathbb{R}) \cong \mathbb{R}^{4}$   
Proof: We find an onto honomorphism:  $\Theta \in L(n, \mathbb{R}) \longrightarrow \mathbb{R}^{4}$  such that  
 $\ker \Theta = SL(n, \mathbb{R}) \longrightarrow \mathbb{R}^{4}$   
 $A \mapsto \det A$   
boxomomorphism:  $\det AB = \det A \det B \quad \forall A, B \in GL(n, \mathbb{R})$   
onto:  $\forall x \in \mathbb{R}^{4}, \exists \begin{pmatrix} Y & 0 \\ 0 & 1 \end{pmatrix} \in GL(n, \mathbb{R})$  such that  
 $det \begin{pmatrix} Y_1 & 0 \\ 0 & 1 \end{pmatrix} = Y \implies det$  is onto  
 $det \begin{pmatrix} Y_1 & 0 \\ 0 & 1 \end{pmatrix} = Y \implies det$  is onto  
 $A \in \ker \det E = SL(n, \mathbb{R})$   
 $Ker \det A = I$   
 $Ker \det A = SL(n, \mathbb{R})$   
 $So SL(n, \mathbb{R}) = ker \det B$ 



## Direct Product Groups

For any subsets 
$$A \subseteq G$$
,  $B \subseteq G$  of a group G, define

$$AB = \{ab : a \in A, b \in B\}$$

Definition Internal Direct Product

Let G be a group, H≤G, K≤G.

We say G is the internal direct product of H and K if

(1) H ₫ G , K ⊉ G ;

(ii) HNK = {e}

(iii) G=HK = {g=hk: heH, keK}

#### Proposition

Let G be the internal direct product of subgroups 
$$H \leq G$$
,  $K \leq G$ 

i) 
$$\forall g \in G$$
, the expression of g as

for heH and KEK is unique

ii) If h∈H, k∈K ⇒ hk=kh

iii) G ≅ H×k

îv) G/H ≅ K

### Proof:

i) If 
$$\forall g \in G$$
,  $g = hK = hK'$  where  $h, h \in H$ ,  $K, K \in K$ .  
Then  $(h')'h = K'(K'') \in H \land K = \{e\} \implies (h')'h = K'(K'') = e$   
 $\in H \in K$ 

ii) Suppose heH, KeK. Consider (hk)(kh)<sup>-1</sup> (hk)(hk)<sup>-1</sup> = hkh<sup>-1</sup>k<sup>-1</sup> =  $(hkh<sup>-1</sup>)k<sup>-1</sup> = h(kh<sup>-1</sup>k<sup>-1</sup>) \in H \cap K = \{e^{1}\}$   $e^{-1} = h(hkh<sup>-1</sup>k<sup>-1</sup>) \in H \cap K = \{e^{1}\}$   $e^{-1} = h(hkh<sup>-1</sup>k<sup>-1</sup>) \in H \cap K = \{e^{1}\}$   $e^{-1} = h(hkh<sup>-1</sup>k<sup>-1</sup>) \in H \cap K = \{e^{1}\}$   $e^{-1} = h(hkh<sup>-1</sup>k<sup>-1</sup>) \in H \cap K = \{e^{1}\}$   $e^{-1} = h(hkh<sup>-1</sup>k<sup>-1</sup>) \in H \cap K = \{e^{1}\}$   $e^{-1} = h(hkh<sup>-1</sup>k<sup>-1</sup>) \in H \cap K = \{e^{1}\}$   $e^{-1} = h(hkh<sup>-1</sup>k<sup>-1</sup>) = h(hkh<sup>-1</sup>k<sup>-1</sup>) \in H \cap K = \{e^{1}\}$   $e^{-1} = h(hkh<sup>-1</sup>k<sup>-1</sup>) = h(hkh<sup>-1</sup>k<sup>-1</sup>) = h(hkh<sup>-1</sup>k<sup>-1</sup>) \in H \cap K = \{e^{1}\}$  $e^{-1} = h(hkh<sup>-1</sup>k<sup>-1</sup>) = h(hkh<sup>-1</sup>$  iii) Define Ψ:G → H×K by  $\psi(g) = (h, k)$  where g = hk,  $h \in H$ ,  $k \in K$ <u>Well-defined</u>: By part i,  $hK = h'K' \implies h = h', K = K'$  $\implies$  (h, k) = (h', k') <u>one-to-one</u>:  $\psi(hk) = \psi(h'k') \implies (h,k) = (h',k')$  $\implies$  h=h, K=K  $\implies$  hk=h'k' <u>onto</u>: Since G = Hk,  $\forall (h,k) \in H \times k$ ,  $\exists g = hk$  s.t  $\psi(g) = (h,k)$ Hence y is a bijection. <u>homomorphism</u>: ψ((hk)(ab)) = ψ(hakb) = (ha, kb) h, a  $\in$  H, k, b  $\in$  K = (h, k) (a, b) external direct product = y(hk)y(ab) Therefore Y is an isomorphism and G≚Hxk iv) Define  $\Theta: G \rightarrow K$ hEH, KEK  $\Theta(hk) = k$ <u>well-defined</u>: By part i)  $hk = h'k' \implies k = k'$ onto: VKEK, JekeG=HKJt O(ek)=K ⇒ In0= K homomorphism: O((hk)(ab)) = O(hakb) = Kb  $= \Theta(hk)\Theta(ab)$ Finally  $hk \in ker \Theta \iff \Theta(hk) = e \iff k = e \iff hk = h \in H$ Hence  $\text{Ker}\Theta = H$  and by FTH,  $G/H \cong K$